检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]武汉科技大学计算机科学与技术学院,武汉430065 [2]智能信息处理与实时工业系统湖北省重点实验室(武汉科技大学),武汉430065
出 处:《计算机应用》2017年第1期255-261,共7页journal of Computer Applications
基 金:国家自然科学基金面上项目(41571396);国家创新训练项目(201410488017)~~
摘 要:针对传统的颜色-深度(RGB-D)图像物体识别的方法所存在的图像特征学习不全面、特征编码鲁棒性不够等问题,提出了基于核描述子局部约束线性编码(KD-LLC)的RGB-D图像物体识别方法。首先,在图像块间匹配核函数基础上,应用核主成分分析法提取RGB-D图像的3D形状、尺寸、边缘、颜色等多个互补性核描述子;然后,分别对它们进行LLC编码及空间池化处理以形成相应的图像编码向量;最后,把这些图像编码向量融合成具有鲁棒性、区分性的图像表示。基于RGB-D数据集的仿真实验结果表明,作为一种基于人工设计特征的RGB-D图像物体识别方法,由于所提算法综合利用深度图像和RGB图像的多方面特征,而且对传统深度核描述子的采样点选取和紧凑基向量的计算这两方面进行了改进,使得物体类别识别率达到86.8%,实体识别率达到92.7%,比其他同类方法具有更高的识别准确率。The traditional RGB-Depth (RGB-D) image object recognition methods have some drawbacks, such as insufficient feature learning and poor robustness of feature coding. In order to solve these problems, an object recognition method of RGB-D image based on Kernel Descriptor and Locality-constrained Linear Coding (KD-LLC) was proposed. Firstly, based on the kernel function of image block matching, several complementary kernel descriptors from RGB-D images, such as 3D shape, size, edges and color, were extracted using Kernel Principal Component Analysis (KPCA). Then, the extracted feature from different cues, were processed by using LLC and Spatial Pyramid Pooling (SPP) to form the corresponding image coding vectors. Finally, the vectors were combined to obtain robust and distinguishable image representation. As a hand- crafted feature method, the proposed algorithm was compared to other hand-crafted feature methods on a RGB-D image dataset. In the proposed algorithm, multiple cues from depth image and RGB image were used, and the sampling points selection and basis vectors calculation schema for depth kernel descriptor generation were proposed. Due to above-mentioned improvements, the category and instance recognition accuracy of the proposed algorithm for objects can respectively reach 86.8% and 92.7%, which are higher than those of the previously hand-crafted feature methods for object recognition from RGB-D images.
关 键 词:RGB-D图像 物体识别 局部约束线性编码 核描述子 空间池化
分 类 号:TP391.413[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28