Boundedness for the Singular Integral with Variable Kernel and Fractional Differentiation on Weighted Morrey Spaces  被引量:1

Boundedness for the Singular Integral with Variable Kernel and Fractional Differentiation on Weighted Morrey Spaces

在线阅读下载全文

作  者:Chao Xue Kai Zhu Yanping Chen 

机构地区:[1]Department of Applied Mathematics, University of Science and Technology Beijing [2]School of Mathematical Sciences, Beijing Normal University

出  处:《Analysis in Theory and Applications》2016年第3期205-214,共10页分析理论与应用(英文刊)

基  金:supported by NSF of China (Grant No. 11471033);NCET of China (Grant No. NCET-11-0574);the Fundamental Research Funds for the Central Universities (FRF-TP-12-006B)

摘  要:Let T be the singular integral operator with variable kernel, T* be the adjoint of T and T# be the pseudo-adjoint of T. Let TIT2 be the product of T1 and T2, T1 o T2 be the pseudo product of T1 and T2. In this paper, we establish the boundedness for commutators of these operators and the fractional differentiation operator D^γ on the weighted Morrey spaces.Let T be the singular integral operator with variable kernel, T* be the adjoint of T and T# be the pseudo-adjoint of T. Let TIT2 be the product of T1 and T2, T1 o T2 be the pseudo product of T1 and T2. In this paper, we establish the boundedness for commutators of these operators and the fractional differentiation operator D^γ on the weighted Morrey spaces.

关 键 词:Singular integral variable kernel fractional differentiation BMO Sobolev space weighted Morrey spaces 

分 类 号:O177[理学—数学] O177.6[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象