检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《控制与决策》2017年第1期21-30,共10页Control and Decision
基 金:国家自然科学基金项目(61170122;61272210);江苏省自然科学基金项目(BK20130155)
摘 要:针对传统分类器的泛化性能差、可解释性及学习效率低等问题,提出0阶TSK-FC模糊分类器.为了将该分类器应用到大规模数据的分类中,提出增量式0阶TSK-IFC模糊分类器,采用增量式模糊聚类算法(IFCM(c+p))训练模糊规则参数并通过适当的矩阵变换提升参数学习效率.仿真实验表明,与FCPM-IRLS模糊分类器、径向基函数神经网络相比,所提出的模糊分类器在不同规模数据集中均能保持很好的性能,且TSK-IFC模糊分类器在大规模数据分类中尤为突出.In order to overcome the shortcoming that traditional classifiers cannot achieve satisfactory generalization performance, good interpretability and fast learning efficiency for datasets, the zero-order TSK fuzzy classifier called TSKFC is proposed to solve the classification problem of middle-scale datasets. In order to make the TSK-FC suitable for largescale data sets, its incremental version called TSK-IFC is developed, in which the incremental fuzzy clustering algorithm called incremental fuzzy(c + p)-means clustering(IFCM(c + p)) is used to train antecedent parameters of fuzzy rules while fast consequent parameter learning is achieved through an appropriate matrix computation trick for the least learning machine. The proposed fuzzy classifiers, the TSK-FC and the TSK-IFC are experimentally compared with the conventional fuzzy classifier called FCPM-IRLS and the RBF neural network, and the results show the power of the proposed fuzzy classifiers, especially the great applicability of the TSK-IFC for large-scale data sets.
关 键 词:TSK-FC TSK-IFC 最小学习机 TSK型模糊分类器 大规模数据集
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15