检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海财经大学统计与管理学院,上海200433
出 处:《数理统计与管理》2017年第1期113-125,共13页Journal of Applied Statistics and Management
基 金:国家自然科学基金资助项目(71271128;71331006;71571113);长江学者和创新团队发展计划(上海财经大学:IRT13077);上海财经大学创新团队支持计划
摘 要:为提高金融时间序列的预测精度,本文提出了基于MODWT、MCP变量选择方法和RELM_Adaboost的混合预测模型。该模型由三步构成:第一步,收集特征变量,包括MODWT分解得到的特征变量以及常用的技术指标;第二步,利用MCP惩罚方法从上述特征变量中选取重要的作为输入变量;第三步,利用Mnet惩罚正则化ELM,将RELM视作弱预测器,然后用Adaboost算法生成强预测器进行预测。实证结果显示:第一,经过MCP方法的筛选,最终的输入变量中不仅包含常用技术指标,还有小波分解所得的变量。第二,混合预测模型RELM_Adaboost有良好的泛化误差表现。本文提出的模型在量化交易时代具有良好的应用前景。In order to improve the prediction accuracy of financial time series, this paper proposes a hybrid model combining MODWT, MCP variable selection method and RELM_Adaboost. The hybrid model has three stages. In the first stage, collect variables which include the popular technical indices and features extracted through wavelet decomposition. In the second stage, select the significant vari- ables with MCP method as final inputs. Finally, regularized ELMs with Mnet penalty (RELM) are used as weak predictors, and they are composed of strong predictor model with the RELM_Adaboost algorithm. Experimental results show that: Firstly, the important inputs selected by MCP method in- clude both popular technical indices and features obtained by the wavelet decomposition. Secondly, the RELM_Adaboost model possesses higher precision accuracy, which means it is highly promising. The proposed model shows its practical value in the field of quantitative trading.
关 键 词:小波分析 变量选择 正则化ELM Adaboost强预测器
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.107.82