变指数空间上的微分形式的加权Poincaré不等式(英文)  

Weighted Poincaré inequalities for differential forms in the variable exponent spaces

在线阅读下载全文

作  者:曹莉[1] 文海玉[2] 

机构地区:[1]海南医学院公共卫生学院,海口571199 [2]哈尔滨工业大学数学系,哈尔滨150001

出  处:《黑龙江大学自然科学学报》2016年第6期744-750,共7页Journal of Natural Science of Heilongjiang University

基  金:Supported by the National Natural Science Foundation of China(71403069);the 51th of the Postdoctoral Science Foundation of China(AUGA4130916512);Introduction of Hainan Medical University Scientific Research Grants Project

摘  要:利用函数的变指数空间的理论,讨论关于微分形式的加权的变指数空间。介绍一类满足log-Hlder条件的指数函数,通过最大算子在加A_(p(x))权的变指数空间上的有界性,探讨L^(p(x))(Ω,Λ~l,μ)空间上同伦算子T的有界性,建立在W_d^(p(x))(Ω,Λ~l,μ)空间上的关于同伦算子T的加A_(p(x))权的嵌入定理。建立有界凸域DΩ上的关于任意微分形式的L^(p(x))(Ω,Λ~l,μ)范数的Poincaré不等式,在L~φ(μ)—平均域上给出同伦算子T的加A_(p(x))权Poincaré—型估计。The weighted variable exponent spaces of differential forms are researched by using the theory of the variable exponent spaces of functions. A class of exponent functions which satisfy log-Holder condi- tions is introduced. The boundedness of the homotopy operator T on the spaces Lp(x) (Ω,∧l ,μ) is dis- cussed by employing the boundedness of the Apex) -weighted maximal operator on variable exponent spaces, and the Ap(x) -weighted embedding theorem for homotopy operator T on the space Wpd(x) (Ω,∧l ,μ) is established and applied to any differential forms in the space Wpd(x) (Ω,∧l ,μ) . The Poincare inequality with Lp(x) (Ω,∧l ,μ) norm is obtained for any differential forms in any bounded convex domain D C Ω , and Ap(x) -weighted Poincare-type estimate for homotopy operator T in Lφ (μ) -averaging domain is given.

关 键 词:Poincar6不等式 同伦算子 微分形式 变指数空间 

分 类 号:O174.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象