检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张梅[1,2] 吴凯华[1,2] 胡跃明[1,2] ZHANG Mei WU Kai-hua HU Yue-ming(College of Automatic Science and Engineering Engineering Research Centre for Precision Electronic Manufacturing Equipments of Ministry, South China University of Technology, Guangzhou 510641, China)
机构地区:[1]华南理工大学自动化科学与工程学院,广州510641 [2]华南理工大学精密电子制造装备教育部工程研究中心,广州510641
出 处:《控制与决策》2017年第2期349-357,共9页Control and Decision
基 金:中央高校基本科研业务费专项资金项目(2015zz100);广州市科技重大专项计划-产学研专项项目(2012Y5-00004)
摘 要:为求解车间作业调度问题,提出一种基于个体差异化自学习的改进教学算法.针对教学算法局部搜索能力不高的缺陷,提出学生不仅应向能力好的学习者学习,亦应进行有差异的自我学习.通过学习者的完工时间评估学生的学习能力,提出学习次数概念,并设计自学习算子,完善学生阶段的更新,提高算法的局部搜索能力.最后,对OR-Library中的标准仿真实例进行实验,结果表明改进教学算法是有效的,其在收敛精度和鲁棒性能上均有较好的提高.To solve the job shop scheduling problem, an improved teaching-learning-based optimization algorithm(TLBO)is proposed in this paper. Aiming at the weak local search ability in the existing TLBO, it is proposed that the learner should learn knowledge not only from the better learners, but also from itself, therefore, a differential self-learning operator is designed. The learning ability of learner is evaluated by its optimal, and its learning times are adaptive calculated according to its learning ability. The learners with higher learning ability have more chance to self-learn. Finally, the proposed method is applied to solve the benchmark instances in OR-Library. The experimental results show that the proposed algorithm is effective while solving the job shop scheduling problem, and its accuracy and robustness can be improved further.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.185