检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]信息工程大学地理空间信息学院,郑州450001
出 处:《计算机工程》2017年第2期16-20,共5页Computer Engineering
基 金:国家自然科学基金"空间数据流的概念漂移问题研究"(41571394)
摘 要:出租车全球定位系统数据中蕴含城市交通和移动对象行为的宏观信息,从中可以挖掘出有价值的异常轨迹模式。将位置和几何形状、行驶时间分别作为出租车轨迹的空间与时间特征,根据特征偏离情况划分时间、空间和时空异常轨迹。从轨迹数据中提取相同起终点的轨迹集,将轨迹划分成轨迹片段,计算轨迹间的相似度并进行基于距离和密度的聚类,在空间特征上初步分离出频繁和稀疏轨迹,根据数据异常判定的kσ准则确定时间特征异常的分离阈值,对时间特征进行再次划分,最终实现出租车异常轨迹检测。实验结果表明,该方法能从异常轨迹中挖掘出个性化路线、异常停留位置和交通路段,为智能交通、物流高效规划和执行等提供参考信息。Taxi Global Position System(GPS) data contain macro information about the behavior of urban traffic and moving object behavior,from which valuable anomalous trajectory patterns can be mined.The location,geometry and travel time are taken as the spatial and temporal characteristics of the taxi trajectory respectively.According to the deviation of the feature,the trajectory anomalies are divided into temporal,space and spatio-temporal outliers.The trajectories of the same starting and ending points are extracted from the trajectory data,and are partitioned into segments.The similarity between trajectories is calculated and clustering based on distance and density is carried out.Frequent and the sparse trajectories are preliminary separated by the spatial characteristies.Based on κσ criterion,the separation threshold of temporal anomaly is determined to realize the classification of the temporal characteristic,and finally the trajectory outlier detection of the taxi is realized.The experimental results show that the method can extract personalized route as well as abnormal parking location and traffic section from abnormal trajectories providing reference information for intelligent transportation as well as efficient logistics planning and execution.
关 键 词:异常轨迹检测 全球定位系统数据 轨迹聚类 时空特征 轨迹模式
分 类 号:TP208[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.88