检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]合肥工业大学计算机与信息学院,合肥230009
出 处:《计算机应用研究》2017年第3期697-701,共5页Application Research of Computers
基 金:国家"863"计划资助项目(2012AA011005)
摘 要:时间序列相似性度量领域中,现有的算法对各类相似性变形的识别能力有限。为了能有效支持识别多种相似性形变,提出涨落模式(FP)的概念,以涨落模式保存原序列的趋势变化信息,利用最长公共子序列算法计算涨落模式的相似度,消除振幅伸缩、振幅漂移和线性漂移等对相似性挖掘带来的影响,实现基于涨落模式的时间序列相似性度量。实验设置仿真数据和真实数据两组实验,对算法的相似性形变识别能力和鲁棒性进行验证。实验表明,此方法能有效地识别各类相似性形变,且在真实数据环境下具有较强的鲁棒性。In the field of time series similarity measure,current existing similarity measure methods can't support the recognition of various similarity shape. This paper put forward fluctuate pattern( FP) to solve this problem. fluctuate pattern could save trend information of original time series. Longest common subsequence( LCS) could calculate the similarity of FP,it could eliminate the influence of the similarity shape to similarity measure. This paper set two experiments to prove the validity of FP to solve the problem of similarity shape and the robustness of FP in real. The experiment shows that FP can recognize all kinds of similarity shape,and it also has strong robustness in real environment.
关 键 词:时间序列 涨落模式 相似变形 相似性度量 分类 鲁棒性
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229