基于近邻保持嵌入算法的心律失常心拍分类  被引量:11

Arrhythmia heartbeats classification based on neighborhood preserving embedding algorithm

在线阅读下载全文

作  者:高兴姣 李智[1] 陈珊珊[1] 李健[1] GAO Xingjiao LI Zhi CHEN Shanshan LI Jian(School of Electronic Information, Sichuan University, Chengdu 610041, P.R. China)

机构地区:[1]四川大学电子信息学院,成都610041

出  处:《生物医学工程学杂志》2017年第1期1-6,共6页Journal of Biomedical Engineering

基  金:四川省科技厅支撑计划项目(2016GZ0091;2016GZ0092)

摘  要:心律失常是一种极其常见的心电活动异常症状,基于心电图(ECG)的心拍分类对心律失常的临床诊断具有十分重要的意义。本文提出一种基于流形学习的特征提取方法——近邻保持嵌入(NPE)算法,实现心律失常心拍的自动分类。分类系统利用NPE算法获取高维心电节拍信号的低维流形结构特征,然后将特征向量输入支持向量机(SVM)分类器进行心拍的分类诊断。实验基于MIT-BIH心律失常数据库提供的ECG数据,对14种类型的心律失常心拍进行分类,总体分类准确率高达98.51%。实验结果表明,所提方法是一种有效的心律失常心拍分类方法。Arrhythmia is a kind of common cardiac electrical activity abnormalities. Heartbeats classification based on electrocardiogram (ECG) is of great significance for clinical diagnosis of arrhythmia. This paper proposes a feature extraction method based on manifold learning, neighborhood preserving embedding (NPE) algorithm, to achieve the automatic classification of arrhythmia heartbeats. With classification system, we obtained low dimensional manifold structure features of high dimensional ECG signals by NPE algorithm, then we inputted the feature vectors into support vector machine (SVM) classifier for heartbeats diagnosis. Based on MIT-BIH arrhythmia database, we clustered 14 classes of arrhythmia heartbeats in the experiment, which yielded a high overall classification accuracy of 98.51%. Experimental result showed that the proposed method was an effective classification method for arrhythmia heartbeats.

关 键 词:心律失常 近邻保持嵌入 心电图 支持向量机 

分 类 号:R541.7[医药卫生—心血管疾病] TN911.6[医药卫生—内科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象