萤火虫-粒子群优化神经网络的异步电机转子断条故障诊断  被引量:12

Fault Diagnosis for Asynchronous Motor Rotor Broken Bar Based on Glowworm Particle Swarm Optimization and Neural Network

在线阅读下载全文

作  者:乔维德 

机构地区:[1]无锡开放大学科研处,江苏无锡214011

出  处:《电机与控制应用》2017年第1期83-88,共6页Electric machines & control application

基  金:无锡市社会事业领军人才资助项目(WX530/2016/022)

摘  要:针对目前异步电机转子断条故障诊断方法存在的局限性及其缺陷,在利用小波包分析提取电机转子断条故障特征向量的基础上,提出一种基于萤火虫-粒子群神经网络的故障诊断方法,构建电机转子断条的神经网络故障诊断模型,采用萤火虫-粒子群算法优化神经网络的结构参数。试验分析表明,该方法用于电机转子断条故障诊断,诊断速度快、准确性高、可靠性好。In view of the limitation and defects of the fault diagnosis method for rotor broken bar of asynchronous motor, based on the wavelet packet analysis and extraction of fault feature vector, a fault diagnosis method based on glowworm particle swarm optimization and neural network was presented, a model of neural network fault diagnosis for motor rotor broken bar was constructed, the structure parameters of the neural network were optimized with glowworm particle swarm optimization algorithm. Experiment analysis showed that, this method was applied to the fault diagnosis for motor rotor broken bar, the diagnosis speed was quick, the accuracy was high, the reliability was good.

关 键 词:电机转子断条 小波包分析 萤火虫-粒子群算法 故障诊断 

分 类 号:TM307.1[电气工程—电机]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象