基于神经网络的功率放大器预失真建模  被引量:2

Power Amplifier Predistortion Modeling Based on Neural Network

在线阅读下载全文

作  者:闫海鹏[1] 吴玉厚 郭维城[3] 

机构地区:[1]沈阳建筑大学机械工程学院,沈阳110168 [2]高档石材数控加工装备与技术国家地方联合工程实验室,沈阳110168 [3]沈阳工程学院机械学院,沈阳110136

出  处:《微电子学》2017年第1期100-105,共6页Microelectronics

基  金:辽宁省博士启动基金资助项目(20131077)

摘  要:提出一种神经网络结合分离信号对功率放大器预失真建模的方法。将输入/输出信号的线性与非线性部分分开处理,利用神经网络良好的逼近能力,采用LM算法,拟合出功率放大器特性曲线,进而建立预失真模型,使非线性功率放大器的输入/输出曲线整体呈线性化。在保证输出幅度限制和输出功率最大化的前提下,与未作信号分离的神经网络建模方法、多项式建模方法以及Saleh函数模型方法相比较,发现信号分离神经网络建模方法能得到较小的归一化均方误差和误差矢量幅度。仿真结果表明,采用信号分离神经网络对功率放大器及其预失真建模,整体线性化误差较小、精度高、效果更佳。A new method was presented to establish the power amplifier predistortion model by combining neural network with the method of separating the signal. The proposed method handled the linear part and the nonlinear part of input-output signals separately. With the good approximation ability of the neural network and the LM algorithm, the power amplifier characteristic curves were fitted, and then the predistortion model was established, which could make the overall input-output curve of the nonlinear power amplifier be linear. Under the premise of ensuring output amplitude limit and output power maximization, the experimental results of the neural network model for signal separation was compared with the results of three models, including the neural network model for signal non-separation, the polynomial model and the Saleh model. It showed that the neural network model for signal separation had smaller normalized mean square error and smaller error vector magnitude. The simulation results showed that the overall linearization of the power amplifier and its predistortion model had smaller error, higher accul-acy and better effect when the signal separate neural network was adopted.

关 键 词:神经网络 分离信号 功率放大器 预失真建模 线性化 

分 类 号:TN911[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象