检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《激光与光电子学进展》2017年第2期118-125,共8页Laser & Optoelectronics Progress
基 金:国家自然科学基金(61372145);天津大学独立创新基金(2015XZC-0005)
摘 要:交通标志识别(TSR)系统是智能交通系统的重要研究方向。道路交通环境复杂、交通标志数据库规模庞大等因素导致在设计TSR系统可行性方案时必须考虑计算复杂度和识别率。提出了一种高效且快速的基于改进主成分分析(PCA)法和极限学习机(ELM)的TSR算法,被称为PCA-HOG。该算法首先提取交通标志数据库中每个交通标志的梯度方向直方图(HOG)特征,利用改进PCA算法对提取出的HOG特征进行降维处理,之后利用降维后的HOG特征进行ELM模型训练,利用经过训练的ELM模型识别测试图片。实验结果表明,基于PCAHOG和ELM模型的交通标志识别算法获得的计算复杂度低,图像识别率可达97.69%。The traffic sign recognition (TSR) system is an important research direction in the field of intelligent transport system. Due to traffic complexity, large scale of traffic signs database and other reasons, the feasibility of TSR design must take computational complexity and recognition rate into consideration. An efficient and fast traffic sign algorithm is proposed based on the improved principal component analysis (PCA) and extreme learning machine (ELM), as known as PCA-ELM. Firstly, the histogram of gradient direction (HOG) features for each TSR are extracted from traffic sign database. HOG dimensional features are reduced by the improved PCA algorithm. ELM model training is presented based on the HOG after dimension reduction. Image recognition is tested based on the trained ELM model. Experimental results show that the recognition algorithm based on PCA-HOG and ELM model can get a high recognition rate of 97.69% and perform low in computational complexity.
关 键 词:图像处理 交通标志识别 特征提取 主成分分析降维 极限学习机
分 类 号:TP751.1[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.65.119