非线性量测下自适应噪声协方差PHD滤波  被引量:1

Adaptive noise covariance PHD filter under nonlinear measurement

在线阅读下载全文

作  者:袁常顺 王俊[1] 向洪[1] 魏少明[1] 张耀天[1] YUAN Changshun WANG Jun XIANG Hong WEI Shaoming ZHANG Yaotian(School of Electronic and Information Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China)

机构地区:[1]北京航空航天大学电子信息工程学院,北京100083

出  处:《北京航空航天大学学报》2017年第1期53-60,共8页Journal of Beijing University of Aeronautics and Astronautics

基  金:国家自然科学基金(61471019;61501011;61501012)~~

摘  要:概率假设密度(PHD)滤波算法已被证明是实时多目标跟踪的有效方法,但现有这些基于PHD滤波的方法假设量测噪声协方差先验已知,而实际中量测噪声协方差可能是未知或随着环境改变而变化。针对这一问题,提出了一种适用于非线性量测模型的自适应噪声协方差多目标跟踪算法。该算法以PHD滤波为基础,采用容积卡尔曼(CK)技术近似非线性量测模型,利用逆威沙特(IW)分布描述量测噪声协方差分布,通过变分贝叶斯(VB)近似技术迭代估计量测噪声协方差和多目标状态联合后验密度。仿真结果表明,本文所提算法可有效估计量测噪声协方差,同时实现准确的目标数和目标状态估计。Probability hypothesis density( PHD) filter has been demonstrated to be an effective approach for multi-target tracking in real time. However,these methods based on the PHD filter assume that the measurement noise covariance is known as a priori. This is unrealistic for real applications because it may be previously unknown or its value may be time-varying as the environment changes. To solve this problem,an adaptive noise covariance algorithm for multi-target tracking under the nonlinear measurement is proposed. Based on the PHD filter,the proposed algorithm employs the cubature Kalman( CK) technology to approximate the nonlinear model,models the noise covariance distribution as inverse Wishart( IW) distribution,and recursively estimates the joint posterior density of the measurement noise covariance and multi-target states by the variational Bayesian( VB) approach. The simulation results indicate that the proposed algorithm could effectively estimate measurement noise covariance,and achieve the accurate estimation of the target number and corresponding multi-target states.

关 键 词:随机有限集 多目标跟踪 未知量测噪声协方差 变分贝叶斯(VB) 概率假设密度(PHD)滤波 

分 类 号:TN957.51[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象