检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京工业大学电子与信息工程学院,江苏南京211800
出 处:《传感器与微系统》2017年第2期154-157,共4页Transducer and Microsystem Technologies
摘 要:针对普通Adaboost算法训练时间长,对复杂背景下(暗光、多角度、多姿态等)人脸检测识别率较低的问题,提出了一种改进的结合肤色检测及几何特征的Adaboost算法。采用肤色粗检筛选出候选人脸区域,同时采用新的非对称的Haar特征来训练分类器,进一步加强检测性能,提升鲁棒性和复杂背景下的宽容度。实验将此算法应用到一个嵌入式系统中,结果表明:在各种复杂背景下的人脸检测中鲁棒性和宽容度均提升很多,误识率进一步降低,并且在嵌入式人脸检测的系统中具有很好的可移植性和实用性。Aiming at problem that training time of ordinary Adaboost algorithm is long and under complex background such as dark light, multi angle, multi pose, the recognition rate of face detection is low, propose an improved Adaboost algorithm based on skin color detection and geometric features. The algorithm screens out candidate face regions based on skin color detection,at the same time,a new non-symmetric Haar feature is used to train the classifier, which further enhances detection performance and promote robustness and tolerance in the context of complexity. In the experiment, the algorithm is applied to an embedded system, the results show that the algorithm can improve the robustness and tolerance of face detection in all kinds of complex background, and the error recognition rate is further reduced, in embedded face detection system and has good portability and practicability.
关 键 词:人脸检测 ADABOOST 新Haar-like特征 嵌入式系统
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.180.237