一种实时电能质量扰动分类方法  被引量:28

A Method of Real-Time Power Quality Disturbance Classification

在线阅读下载全文

作  者:陈晓静[1,2] 李开成[1,3] 肖剑[4] 孟庆旭[1] 蔡得龙 

机构地区:[1]强电磁工程与新技术国家重点实验室(华中科技大学),武汉430074 [2]长江大学电子与信息学院,荆州434023 [3]湖北工业大学太阳能高效利用湖北省协同创新中心,武汉430064 [4]国网湖南电力公司电力科学研究院,长沙410007

出  处:《电工技术学报》2017年第3期45-55,共11页Transactions of China Electrotechnical Society

基  金:国家自然科学基金(51277080);太阳能高效利用湖北省协同创新中心科研团队培育项目(HBSZD2014001)资助

摘  要:针对电能质量扰动实时分类的需求,提出了一种基于强跟踪滤波器和极限学习机的电能质量扰动分类方法。强跟踪滤波器通过引入渐消因子矩阵克服了扩展卡尔曼滤波器的易发散的问题。强跟踪滤波器不仅可以检测扰动幅值而且还可以提供渐消因子作为特征量,以此识别暂态扰动和谐波。该方法提出使用基波幅值最大值、最小值、波动次数和渐消因子频度均值四个特征量组成特征向量作为极限学习机分类模型的训练样本;最后将分类器用于电能质量扰动识别。为了提高极限学习机分类精度,提出了对少量边界错分样本的类别进行校正的规则校正法。仿真表明改进后的方法能够识别包括两种复合扰动在内的10种电能质量扰动信号,并具有良好抗噪性。与随机梯度下降反向传播方法、最小二乘支持向量机和序贯极限学习机相比,该方法训练和分类速度快,分类准确率高,适合于在线应用。In order to meet the requirements of classifying power-quality disturbances in real time,this paper proposes a new method based on the strong tracking filter( STF) and the extreme learning machine( ELM). STF is the modified version of the extended Kalman filter( EKF) by introducing the fading factor matrix to solve the problem of divergence. STF can not only detect the amplitude of the fundamental but also provide the fading factor as a feature identifying transient disturbances and harmonics. The proposed feature vector sets were composed of four features including the maximum and the minimum of the fundamental amplitude,the number of fluctuations,and the mean value of the fading factor frequentness. They were input into the ELM as the training examples to obtain a classifier for identifying disturbances. In addition,some rules were used to correct the error classification in a few boundary samples for attaining the higher accuracy. The simulation results show that the proposed method can identify 10 types of power quality disturbances including two complex disturbances,and have good noise immunity. And the higher accuracy can be achieved with less training and testing time compared with the stochastic gradient descent back-propagation( SGBP),least square support vector machine( LSSVM) and online sequential extreme learning machine method( OSELM). The proposed method is suitable for the online application.

关 键 词:强跟踪滤波器 极限学习机 电能质量 渐消因子 扰动分类 

分 类 号:TN713[电子电信—电路与系统] TM76[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象