小波变换和神经网络的电路故障诊断  被引量:6

Circuit fault diagnosis based on wavelet transform and neural network

在线阅读下载全文

作  者:辛健[1] 马力[1] 

机构地区:[1]沧州师范学院机械与电气工程学院,河北沧州061001

出  处:《现代电子技术》2017年第5期174-177,共4页Modern Electronics Technique

摘  要:模拟电路的元件较多,相互之间的耦合性较强,容易发生故障。为了提高电路故障的诊断准确性,提出小波变换和神经网络的电路故障诊断方法。首先采用小波变换方法提取电路故障信息特征,然后采用神经网络分类提取的故障特征量实现对电路故障的诊断和分类识别,最后通过仿真实验进行性能测试,结果表明,该方法提高了电路故障检测的准确度,具有较好的实际应用价值。The multiple components of the analog circuit have strong coupling among them, and it is prone to failure. In order to improve the accuracy of the circuit fault diagnosis, a circuit fault diagnosis method based on wavelet transform and neural network is proposed. The wavelet transform method is used to extract the information feature of the circuit fault. The neural net- work is used to classify and extract the fault feature quantity to realize the circuit fault diagnosis, and classification and recogni- tion. The performance was tested with the simulation experiment. The results show that the method has improved the accuracy of the circuit fault detection, and has superior practical application value.

关 键 词:小波变换 神经网络 电路故障诊断 故障特征量 

分 类 号:TN711.34[电子电信—电路与系统] TP277[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象