检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]沧州师范学院机械与电气工程学院,河北沧州061001
出 处:《现代电子技术》2017年第5期174-177,共4页Modern Electronics Technique
摘 要:模拟电路的元件较多,相互之间的耦合性较强,容易发生故障。为了提高电路故障的诊断准确性,提出小波变换和神经网络的电路故障诊断方法。首先采用小波变换方法提取电路故障信息特征,然后采用神经网络分类提取的故障特征量实现对电路故障的诊断和分类识别,最后通过仿真实验进行性能测试,结果表明,该方法提高了电路故障检测的准确度,具有较好的实际应用价值。The multiple components of the analog circuit have strong coupling among them, and it is prone to failure. In order to improve the accuracy of the circuit fault diagnosis, a circuit fault diagnosis method based on wavelet transform and neural network is proposed. The wavelet transform method is used to extract the information feature of the circuit fault. The neural net- work is used to classify and extract the fault feature quantity to realize the circuit fault diagnosis, and classification and recogni- tion. The performance was tested with the simulation experiment. The results show that the method has improved the accuracy of the circuit fault detection, and has superior practical application value.
分 类 号:TN711.34[电子电信—电路与系统] TP277[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3