A class of metrics and foliations on tangent bundle of Finsler manifolds  

A class of metrics and foliations on tangent bundle of Finsler manifolds

在线阅读下载全文

作  者:Hongchuan XIA Chunping ZHONG 

机构地区:[1]College of Mathematics and Statistics, Xinyang Normal University, Xinyang 464000, China [2]School of Mathematical Sciences, Xiamen University, Xiamen 361005, China

出  处:《Frontiers of Mathematics in China》2017年第2期417-439,共23页中国高等学校学术文摘·数学(英文)

基  金:Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant Nos. 11271304, 11671330, 11571288) and the Nanhu Scholars Program for Young Scholars of Xinyang Normal University.

摘  要:Let (M, F) be a Finsler manifold, and let TMo be the slit tangent bundle of M with a generalized Riemannian metric G, which is induced by F. In this paper, we extract many natural foliations of (TMo, G) and study their geometric properties. Next, we use this approach to obtain new characterizations of Finsler manifolds with positive constant flag curvature. We also investigate the relations between Levi-Civita connection, Cartan connection, Vaisman connection, vertical foliation, and Reinhart spaces.Let (M, F) be a Finsler manifold, and let TMo be the slit tangent bundle of M with a generalized Riemannian metric G, which is induced by F. In this paper, we extract many natural foliations of (TMo, G) and study their geometric properties. Next, we use this approach to obtain new characterizations of Finsler manifolds with positive constant flag curvature. We also investigate the relations between Levi-Civita connection, Cartan connection, Vaisman connection, vertical foliation, and Reinhart spaces.

关 键 词:Finsler manifold FOLIATION constant flag curvature Vaismanconnection 

分 类 号:O186.14[理学—数学] O186.1[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象