逃逸离散差分进化算法在齿轮传动优化中的应用  

Application of Escape Discrete Differential Evolution Algorithm in Optimal Design of Gear Transmission

在线阅读下载全文

作  者:车林仙[1,2,3] 易建[2,3,4] 何兵[2,3,4] 

机构地区:[1]重庆工程职业技术学院机械工程学院,重庆402260 [2]重庆工商大学制造装备机构设计与控制重庆市重点实验室,重庆400067 [3]四川理工学院人工智能四川省重点实验室,四川自贡643000 [4]泸州职业技术学院机械工程系,四川泸州646005

出  处:《机械传动》2017年第1期36-42,共7页Journal of Mechanical Transmission

基  金:重庆市教育委员会科学技术研究项目(KJ1403201);人工智能四川省重点实验室开放基金资助项目(2013RYJ02)

摘  要:根据决策变量映射关系,将齿轮传动设计中的离散约束优化问题转化为约束非负整数规划问题(Constrained non-negative integer programming problems,CNIPPs),并应用离散差分进化(Discrete differential evolution,DDE)算法求解该问题。引入定量评价种群多样性的平均基因距离指标,并据此提出一种采用反向学习算子生成新个体的自适应逃逸策略,以克服基本DDE算法求解离散问题易陷入局部最优区域的缺点。将逃逸策略融入DDE算法,并结合可行性规则约束处理技术,形成求解CNIPPs的逃逸离散差分进化(Escape DDE,EDDE)算法。应用EDDE算法求解齿轮传动优化设计实例,并提出用于比较多种算法优化性能的相对综合性能指标。通过测试与分析可知,新算法具有良好稳健性和可靠性,且综合指标优于对比算法。优化结果明显好于已有文献的最优解,齿轮质量下降了27%。According to the equivalent mapping relation of decision variables, the constrained discrete optimization problems for gear transmission design are transformed into nonlinear constrained non - negative integer programming problems (CNIPPs) and a discrete differential evolution (DDE) algorithm is used to solve these problems. An index of average gene distance is introduced to evaluate quantitatively the population diver- sity. On this basis, this work presents an adaptive escape strategy in which an opposite -based learning opera- tor is employed to generate new individuals to overcome the drawback that the basic DDE algorithm easily traps into local optimal regions for solving discrete optimization problems. Thus this study embeds the escape strate- gies in DDE algorithm, adopts feasibility rules to handle constraints, and forms to an escape DDE (EDDE) algorithm for s01ving CNIPPs. The proposed EDDE algorithm is applied to approach a real case of gear transmis- sion optimization and an index of relative comprehensive performance is presented to compare several algorithms on optimization performances. The experimental and analytical results show that this novel algorithm has good robustness and reliability and is better than compared ones in term of the comprehensive index. Furthermore, the obtained result is better than one of the published literature and the corresponding gear mass is decreased by 27%.

关 键 词:差分进化算法 离散变量 自适应逃逸算子 约束优化设计 齿轮传动 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] TH132.41[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象