检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:唐亮[1] 赵晓峰[1] 席耀一[1] 易绵竹[1]
出 处:《山东大学学报(理学版)》2017年第1期29-36,共8页Journal of Shandong University(Natural Science)
基 金:国家重点基础研究发展计划(973计划)项目(2014CB340400;2012CB316303);国家自然科学基金重点项目(61232010);国家自然科学基金面上项目(61173064);国家科技支撑计划(2012BAH39B04)
摘 要:为解决信息检索中用户查询可能与索引文档信息表示不匹配从而影响检索效果的问题,提出一种融合局部共现和上下文相似度的查询扩展方法,从与查询词具有共现关系的邻接词和与查询词具有高相关性或同指关系的词两个方面对用户输入查询词进行扩展,重点测试邻接词的取词窗口大小以及上下文向量的最优长度。试验表明:与采用单一扩展方法相比,融合方法的平均准确率取得了明显提高,当邻接词的窗口大小取5,上下文向量的长度取15时,具有更好的平均准确率。In order to solve the mismatch between user query and representation of index document, which affects the performance of information retrieval, this paper proposes a query expansion method based on the integration of local co- occurrence and context similarity. The method expands the user query through the following two ways, one is the adja- cent words which have co-occurrence relationship with the query words, the other is the similar words which have a high correlation with the query words. The method focuses on testing the influence of the adjacent words' window size and the optimal length of context vectors. Experimental results show that compared with the single expansion method, our method can improve the average accuracy obviously, and the average accuracy reaches the highest when the window size of adjacent words is 5, and the length of the context vector is 15.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249