基于粗糙集与C5.0决策树的林地质量评价  被引量:6

Evaluation of forest land quality based on rough set and C5.0 decision tree

在线阅读下载全文

作  者:张宗艺 刘鹏举[2] 唐小明[1,2] ZHANG Zongyi LIU Pengju TANG Xiaoming(College of Soil and Water Conservation ,Beijing Forestry University ,Beijing 100083,China Research Institute of Resource Information Techniques ,Chinese Academy of Forestry ,Beijing 100091 ,China)

机构地区:[1]北京林业大学水土保持学院,北京100083 [2]中国林业科学研究院资源信息研究所,北京100091

出  处:《西北农林科技大学学报(自然科学版)》2017年第3期96-102,110,共8页Journal of Northwest A&F University(Natural Science Edition)

基  金:中央级公益性科研院所基本科研业务费专项"基于大数据理论的森林资源数据空间分析技术研究"(IFRIT201502)

摘  要:【目的】使用数据挖掘算法实现多因子共同影响下的林地质量综合评价,探索林地质量与环境因子之间的非线性关系,为提高森林经营信息化水平提供技术支持。【方法】使用辽宁省抚顺市胡桃楸(Juglans mandshurica Maxim)森林资源小班数据,采用粗糙集算法筛选出与林地质量相关的重要因子,然后建立C5.0决策树,得出环境因子与林地质量间的非线性关系。【结果】影响胡桃楸林地质量的主要因子有坡度、坡向、坡位、海拔、下木种类、下木盖度、地被物种类、地被物盖度和土壤质地;以粗糙集方法选取的因子为输入变量的决策树模型规模小、复杂度低、决策规则简单,预测准确率达91.20%。【结论】本研究提出的林地质量等级预测和评价方法,能在保证模型准确率的同时降低算法的时间和空间复杂性,提高数据挖掘效率,并能克服一般林地质量评价中靠专家打分的局限性与主观性。【Objective】This study used data mining algorithm to realize the comprehensive evaluation of forest land quality under the influence of multiple factors and explored the nonlinear relationship between forest land quality and environmental factors to provide technical support for improving information level of forest management.【Method】Based on the Juglans mandshurica Maxim forest resources subcompartment data in Fushun,Liaoning,the important factors related to the quality of forest land were selected by rough set algorithm,and the C5.0decision tree was established to obtain the nonlinear relationship between environmental factors and forest land quality.【Result】The main factors affecting the quality of J.mandshurica Maxim forest land included slope,slope aspect,slope position,elevation,shrub species,shrub coverage,litter types,litter cover and soil texture.The decision tree model based on rough set method had smaller scale,lower complexity,and simple decision with accuracy rate of 91.20%.【Conclusion】The established method can not only evaluate forest land quality precisely,but also reduce the complexity.It improves the efficiency of data mining,and overcomes the limitation and subjectivity of expert scoring in traditional evaluation of forest land quality.

关 键 词:粗糙集 决策树 林地质量评价 森林资源小班数据 胡桃楸 

分 类 号:S757[农业科学—森林经理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象