基于NSST域的自适应区域和SCM相结合的多聚焦图像融合  被引量:6

Multi-focus Image Fusion Using Adaptive Region and SCM Based on NSST Domain

在线阅读下载全文

作  者:赵杰[1,2] 温馨[1,2] 刘帅奇[1,2] 张宇[1,2] ZHAO Jie WEN Xin LIU Suai-qi ZHANG Yu(College of Electronic and Information Engineering, Hebei University, Baoding 071000, China Key Laboratory of Digital Medical Engineering of Hebei Province, Baoding 071000, China)

机构地区:[1]河北大学电子信息工程学院,保定071000 [2]河北省数字医疗工程重点实验室,保定071000

出  处:《计算机科学》2017年第3期318-322,共5页Computer Science

基  金:国家自然科学基金(61572063;61401308);河北大学自然科学研究计划项目(2014-303);河北大学研究生创新资助项目(X2015085)资助

摘  要:为了提高多聚焦图像的融合效果,结合多源图像之间的共享相似性,提出了一种基于非下采样Shearlet变换(Nonsubsampled Shearlet Transform,NSST)域的自适应区域与脉冲发放皮层模型(Spiking Cortical Model,SCM)结合的新型图像融合算法。首先用NSST分解源图像,然后计算边缘能量(Energy Of Edge,EOE),在自适应区域用投票加权法融合低频系数,高频系数由边缘能量作为输入的SCM点火图融合,最后通过逆NSST获得该融合图像。该算法既可以很好地保持源图像的信息,又可以抑制在变换域因非线性运算产生的像素失真。实验结果表明,该方法优于最新的变换域和脉冲耦合神经网络(Pulse Coupled Neural Network,PCNN)融合方法。In order to improve the fusion effect of multi-focus image, combined with the shared similarity among multi- ple source images, a new image fusion algorithm based on adaptive regions and spiking cortical model (SCM) of nonsub- sampled shearlet transform (NSST) domain was proposed. First, NSST is utilized for decomposition of the source ima- ges. Then by calculating the energy of edge(EOE), the low frequency coefficients are fused by weight votes in adaptive regions. And the high frequency coefficients is fused by fired map of SCM which is motivated by EOE. Finally the fusion image is gained by inverse NSST. The algorithm can both preserve the information of the source images well and sup- press pixel distortion due to nonlinear operations in transform domain. Experimental results demonstrate that the pro- posed method outperforms the state-of-the-art transform domain and pulse coupled neural network (PCNN) fusion methods.

关 键 词:图像融合 NSST 共享相似性 自适应区域 SCM EOE 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象