检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江工贸职业技术学院电子工程系,浙江温州325003
出 处:《计算机测量与控制》2017年第3期222-226,共5页Computer Measurement &Control
摘 要:自组织型模糊类神经网络(SCFNN)可依据一定的法则自我构建神经网络的组织结构,从而适用于当前控制对象;多层神经元是传统的类神经网络,广泛应用于各个领域;倒传递学习法与最陡坡降法相结合,可使以上两种类神经网络进行有效的融合;目前,信道均衡器上的系统架构种类非常多,各种类神经网络应用于信道均衡器也颇为普遍;在研究SCFNN的基础上,将其应用于通道均衡器确实可行,效果良好;比较了SCFNN与MLP在通道均衡器的成效;仿真表明,在相同通道环境下,SCFNN的训练收敛速度、位错误率与系统敏感度优于MLP,完成结构学习后SCFNN的结构也颇为精简。Self-Constructing Fuzzy Neural Network (SCFNN) can create a fuzzy neural network for a target in accordance with a dedi-cated algorithm. Multi-layer Perceptron (MLP) neural network is a very traditional neural network and many applications were developed in different fields. Back Propagation (BP) combined with steepest descent method make the SCFNN and MLP learned efficiently. Today, many kinds of channel equalizers were constructed, and many kinds channel equalizers based on neural network were also constructed. We prove that the SCFNN can be a superior equalizer. We also compare the performance of SCFNN and MLP applied in channel equalizer. The simulation results show the SCFNN is superior than the MLP in convergence speed, bit error rate and sensitivity. When the SCFNN learning processes is completed the, we found the structure is very simpler.
关 键 词:自组织型模糊类神经网络 均衡器 多层神经元 最陡坡降法
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.97.186