长江口流域亚硝酸盐预测模型与分析  被引量:1

Analysis on the Prediction Model of Nitrite in the Yangtze River Estuary

在线阅读下载全文

作  者:林志贵[1,2,3] 杜军兰[1] 冯林强[1] 姚芳琴 李燕[1] LIN Zhi-gui DU Jun-lan FENG Lin-qiang YAO Fang-qin LI Yan(National Ocean Technology Center, Tianjin 300111, China School of Precision Instrument & Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin 300387, China)

机构地区:[1]国家海洋技术中心近海海洋环境观测与监测技术研究室,天津300112 [2]天津大学精密仪器与光电子工程学院,天津300072 [3]天津工业大学电子与信息工程学院,天津300387

出  处:《海洋技术学报》2017年第1期80-85,共6页Journal of Ocean Technology

基  金:海洋公益性行业科研专项经费资助项目(201405007);国家海洋技术中心科技创新基金资助项目"应用于海洋水质监测仪器的数据现场分析与展示模块构建"

摘  要:营养盐是控制长江口流域富营养化的关键因子之一。分析亚硝酸盐与其影响因子之间关系,引入人工智能方法,基于弹性BP神经网络,建立亚硝酸盐非线性预测模型,目的是通过影响因子在线监测,间接实现亚硝酸盐在线监测。依据神经网络权值和阈值获取方法不同,形成基于弹性BP神经网络、基于遗传算法和弹性BP神经网络,和基于改进的遗传算法和弹性BP神经网络的亚硝酸盐预测模型3种。通过仿真实验,分析3种模型对亚硝酸盐预测的影响,发现基于改进的自适应遗传算法和弹性BP神经网络的亚硝酸盐模型预测效果最优,为选择合适模型提供依据。Nutritive salt is one of key factors that control the Yangtze River estuary eutrophication. This paper analyzes the relationships between nitrite and its influence factors, and introduces the method of artificial intelligence to establish nonlinear nitrite predictive models based on elastic BP neural networks, which provides a way to indirectly achieve online nitrite detection through monitoring the influence factors. According to different methods of acquiring the weights and thresholds of the elastic BP neural network, this paper develops three nitrite predictive models, including the model based on an elastic BP neural network, on an adaptive genetic algorithm(AGA) and an elastic BP neural network, and on an improved AGA and an elastic BP neural network. Through simulation experiments, this paper analyzes the effects of the three forecasting models on nitrite prediction. It is found that the model based on an improved the adaptive genetic algorithm and an elastic BP neural network has the best effect to predict nutrient values, which provides a basis for selecting appropriate models.

关 键 词:亚硝酸盐 预测 自适应遗传算法 弹性BP神经网络 

分 类 号:X55[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象