并行处理技术在地理信息数据处理中的应用  被引量:1

Parallel Processing Technology in Geographic Information Data Processing

在线阅读下载全文

作  者:徐道柱[1,2,3] 金澄[1,2,3] 焦洋洋[2,3] XU Daozhu JIN Cheng JIAO Yangyang(1nformation Engineering University, Zhengzhou 450001, China State Key Laboratory of C, eo-lr~ormation Engineering, Xi'an 710054, China Xi'an Institute of Surveying and Mapping, Xi'an 710054, China)

机构地区:[1]信息工程大学,河南郑州450001 [2]地理信息工程国家重点实验室,陕西西安710054 [3]西安测绘研究所,陕西西安710054

出  处:《测绘科学技术学报》2016年第6期629-634,共6页Journal of Geomatics Science and Technology

基  金:国家自然科学基金项目(41201469)

摘  要:随着地理信息存储量的飞速增长,传统的单进程、集中式的数据处理方式已不能满足基于网络的地理信息服务的效能要求。分析对比了OpenMP,MPI和MapReduce等主流并行编程模式,将关系型数据库与分布式空间数据管理系统相结合,提出了面向并行处理的地理信息存储模型和数据组织模型,将该模型与传统模型进行了对比分析,并基于MapReduce实现了地理空间数据并行处理框架,选取了矢量数据装载、影像数据装载以及数据切片作为典型数据处理案例开展对比实验,该技术方案的处理效率均数倍于传统技术方案。实验表明,该模型能够很好地支持并行处理框架,可为分布式环境下数据处理中心构建提供一个有效解决方案。With the rapid growth of geographic information storage, traditional single process and centralized data processing could not satisfy the requirement of the web-based geographic information service. OpenMP, MPI, Ma- pReduce and other mainstream parallel programming mode were analyzed and compared, and the parallel process- ing oriented geographic information storage model and data organization model were presented by combining rela- tional database with distributed spatial data management system. Through comparing this model with the traditional model, geospatial data parallel processing framework based on MapReduce was implemented, and the loaded vec- tor data, image data and data slice were selected as typical case of data processing to carry out comparative experi- ments. The processing efficiency of the technical solution was many times greater than traditional technical pro- grams. Experiments show that this model can support parallel processing framework and provide an effective solu- tion for building data processing centers in the distributed environment.

关 键 词:并行处理 MAPREDUCE框架 主服务器集群 并行矢量数据模型 数据切片 

分 类 号:P208[天文地球—地图制图学与地理信息工程] TP391[天文地球—测绘科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象