检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李玉荣[1] 肖长春[2] 林浩飞 李俊[1] 唐静[1] 张留喜[2] 翟金霞[1] LI Yu-rong XIAO Chang-chun LIN Hao-fei LI Jun TANG Jing ZHANG Liu-xi ZHAI Jin-xia(Department of Occupational and Environmental Health, School of Public Health, A nhui Medical University, Hefei, Anhui 230032, Chin)
机构地区:[1]安徽医科大学公共卫生学院劳动卫生与环境卫生学系,合肥安徽230032 [2]合肥市疾病预防控制中心
出 处:《环境与健康杂志》2016年第11期960-963,共4页Journal of Environment and Health
基 金:国家空气污染对人群健康影响监测项目
摘 要:目的探讨大气污染物SO_2、NO_2和PM_(2.5)浓度与合肥市滨湖医院肺炎日门诊量之间的关系。方法采用时间序列分析的广义相加Poisson回归模型,在控制长期趋势、星期几效应和气象因素等混杂因素的影响后,定量分析2014年安徽省合肥市大气污染物SO_2、NO_2、PM_(2.5)日均浓度与滨湖医院肺炎日门诊量的关系及滞后效应。结果单污染物模型中,在控制了长期趋势、星期几效应和气象因素的影响后,SO_2在滞后3、4、5 d(lag3、lag4、lag5)时对肺炎日门诊量的影响有统计学意义(P<0.05),NO_2滞后2、3、4、5 d(lag2、lag3、lag4、lag5)时的影响有统计学意义(P<0.01),PM_(2.5)滞后3、4 d(lag3、lag4)时的影响有统计学意义(P<0.05);SO_2、NO_2、PM_(2.5)的滞后效应分别在lag3、lag2、lag4时最明显,当SO_2、NO_2、PM_(2.5)浓度每升高10μg/m^3时,肺炎日门诊量分别增加1.54%(95%CI:0.28%~2.81%),1.98%(95%CI:0.89%~3.08%)和0.28%(95%CI:0.06%~0.50%)。多污染物模型中,当模型中引入两种或两种以上的污染物后,各污染物对肺炎日门诊量的效应估计值均较单污染物模型降低,但并不改变各污染物与肺炎日门诊量之间的正向关联。结论合肥市大气污染物SO_2、NO_2、PM_(2.5)浓度升高可能引起医院肺炎日门诊量增加,且有一定的滞后效应。Objective To understand the relationship between air pollutants, such as sulfur dioxide(SO2), nitrogen dioxide(NO2)and fine particulate matter(PM2.5) and daily outpatient visits for pneumonia in Hefei city, Anhui province. Methods The data analysis was conducted by using a Poisson generalized additive regression models to describe the air pollutants-pneumonia outpatient visits relationship and the lag effects. Long-term trends, day-of-week effect, and meteorological factors were adjusted to control the potential confounding effects. Results In the single-pollutant model, it had statistically significance between pneumonia daily outpatient visits and SO2concentration(lag3, lag4, lag5)(P〈0.05), NO2concentration(lag2, lag3, lag4,lag5)(P〈0.01), PM2.5concentration(lag4, lag5)(P〈0.05), respectively. The lag effects for SO2(lag3), NO2(lag2) and PM2.5(lag4)showed the most significant influence, respectively. The excess relative risks of pneumonia daily outpatient visits for a 10 μg/m^3 increment in SO2, NO2 and PM2.5were 1.54%(95%CI:0.28%-2.81%), 1.98%(95%CI:0.89%-3.08%) and 0.28%(95%CI:0.06%-0.50%), respectively. In the multiple-pollutant models, all pollutants effect estimates were lower compared with the results of the single-pollutant model when other pollutants were adjusted, but the positive correlations still existed between the pollutants and pneumonia daily outpatients. Conclusion The increase of air pollutants such as SO2, NO2 and PM2.5may cause pneumonia daily outpatient visits increasing with lag effect in Hefei.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28