基于独立权重和分级变异策略的粒子群算法  被引量:5

Particle Swarm Optimization Algorithm Based on Independent Weight and Classification Mutation Strategy

在线阅读下载全文

作  者:刘振[1] 周先存[1] LIU Zhen ZHOU Xiancun(School of Information Engineering, West Anhui University, Lu' an 237012, Anhui Province, China)

机构地区:[1]皖西学院信息工程学院,安徽六安237012

出  处:《吉林大学学报(理学版)》2017年第2期333-339,共7页Journal of Jilin University:Science Edition

基  金:国家自然科学基金(批准号:61303209;61572366)

摘  要:针对粒子群优化算法中存在的局部收敛问题,提出一种融合惯性权重调整和群体最佳位置变异两种策略的粒子群优化算法.该算法将个体粒子的状态信息引入惯性权重策略,独立调整每个粒子的惯性权值,体现个体粒子对权重需求的差异.在最佳位置变异策略中采用分级思想,根据粒子群的搜索状态选择相应的极值变异方式,使变异操作更具针对性.实验结果表明,该算法对多个测试函数都表现出良好的优化性能,能有效避免局部收敛问题,提高了粒子群的全局搜索能力.Aiming at the local convergence problem of particle swarm optimization algorithm,we proposed a particle swarm optimization algorithm based on the inertia weight adjustment and group best position variation.In this algorithm,the state information of individual particles was introduced into the inertia weight strategy.The inertia weight of each particle was adjusted independently,which reflected the difference of individual particles to the weight demand.In the mutation strategy of the best position,the classification idea was used.According to the searching state of the particle swarm,the corresponding extreme mutation mode was selected,which made the mutation operation more targeted.The experimental results indicate that the new algorithm shows good optimization performance for several test functions,which can effectively avoid local convergence problem and improve the global search ability of the particle swarm.

关 键 词:独立惯性权重 分级变异 粒子群 优化算法 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象