离散完整力学系统的Mei对称性共形不变性  

Conformal Invariance of Mei Symmetry for Discrete Holonomic Systems

在线阅读下载全文

作  者:夏丽莉[1,2] 张伟[1] Xia Lili Zhang Wei(College of Mechaniacl Engineering, Beijing University of Technology, Beijing 100124?China College of Physical and Electronic Engineering ? Henan Institute of Finance and Banking, Zhengzhou 450046, China)

机构地区:[1]北京工业大学机械工程与应用电子技术学院,北京100124 [2]河南财政金融学院物理与电子工程学院,郑州450046

出  处:《河南师范大学学报(自然科学版)》2017年第2期18-22,共5页Journal of Henan Normal University(Natural Science Edition)

基  金:国家自然科学基金(11502071,11290152);河南省高等学校重点项目(17A140015);北京市朝阳区博士后基金(2016ZZ-01-17)

摘  要:基于离散完整系统的差分Euler-Lagrange方程,研究离散完整力学系统的Mei对称性共形不变性和守恒量.提出了该系统Mei对称性共形不变性的定义和确定方程.结合规范函数和共形因子,得到在无限小单参数点变换群作用下系统的共形不变性导致的守恒量形式.举例说明结果的应用.Based the difference Euler-Lagrange equations on regular lattices, the conformal invariance of the Mei symme-try and the conserved quantities are investigated for discrete holonomic systems. The conformal invariance of the Mei symmetry is defined for the discrete holonomic systems. The criterion equations and the determining equations are proposed. The con-served quantities of the systems are derived from the structure equation governing the gauge function. An example is given to il-lustrate the application of the results.

关 键 词:离散Noether定理 Mei对称性共形不变性 守恒量 

分 类 号:O316[理学—一般力学与力学基础]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象