检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:封万里 岑翼刚[1,2] 王艳红[1,2] 岑翼[3] 梁列全[4]
机构地区:[1]北京交通大学信息科学研究所,北京100044 [2]现代信息科学与网络技术北京市重点实验室,北京100044 [3]中央民族大学信息工程学院,北京100081 [4]广东财经大学电子商务研究院,广州510320
出 处:《信号处理》2017年第4期533-539,共7页Journal of Signal Processing
基 金:国家"八六三"高技术研究发展计划(2014AA015202);国家自然科学基金(61272028;61572067);北京市自然基金(4162050);广东省产学研合作专项(2013B090500010)
摘 要:在目标跟踪中,针对目标外观改变使得目标丢失的问题,本文提出了特征在线更新与加权的压缩跟踪(compressive tracking,CT)算法。首先基于压缩感知理论提取目标的矩形特征,根据每个特征对当前帧目标的分类效果判定其可靠性,及时更新不可靠特征;其次,实时增加可靠特征在分类器中的权重,从而突出可靠特征的重要性;最后将加权候选样本特征输入贝叶斯分类器,得到下一帧的目标位置。选取八组视频序列测试改进算法的效果,结果表明与传统的压缩跟踪,局部敏感直方图跟踪(locality sensitive histograms tracking,LSHT)及在线自适应增强(online Ada Boost,OAB)算法相比,改进算法取得了更好的跟踪结果,并且在目标外观改变时依然跟踪准确,平均帧速为39fps,满足实时性要求。In the object tracking, object is often lost because of the object appearance changes. Thus, an improved com- pressive tracking algorithm based on the online feature updating and weighting is proposed in this paper. Firstly, the rectan- gle features are extracted based on the compressed sensing theory. The reliability of each feature is determined according to their classification performances for object tracking in the current frame. Then unreliable features are updated in time. Sec- ondly, the values of reliable features' weights are increased in real-time such that their importances can be emphasized. Fi- nally, these new weighted candidate features are inputted into the Beyesian classifier to distinguish the object from back- ground in the next frame. Eight challenging video sequences are chosen to verify the performances of our proposed algo- rithm. Compared with traditional compressive tracking algorithm, locality sensitive histograms tracking algorithm and online AdaBoost, experimental results show that our algorithm achieves better tracking results and is robust for appearance chan- ges. The frame rate is 39fps in average, which satisfies the requirement of real-time tracking.
关 键 词:压缩感知 目标跟踪 外观改变 在线特征更新 加权特征
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.23.100.174