检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘国军[1] 高丽霞[1] 陈丽奇 LIU Guo-jun GAO Li-xia CHEN Li-qi(School of Mathematics and Statistics, Ningxia University, Yinchuan 750021, China)
出 处:《光学精密工程》2017年第3期742-748,共7页Optics and Precision Engineering
基 金:国家自然科学基金资助项目(No.61461043;No.61362029);宁夏自然科学基金资助项目(No.NZ1616)
摘 要:为了设计与人的主观评价相吻合的全参考型客观图像质量评价(IQA)算法。针对不同算法提取的局部特征,利用广义平均的非线性性质,提出了2种池化策略,以提高结构相似度(SSIM),梯度结构相似度(GSSIM),特征相似度指标(FSIM)的评价能力。在TID2008和TID2013数据库中进行数值实验,讨论了所有失真类型非线性参数的选择以及不同失真类型之间非线性参数的变化。结果表明,采用广义平均池化策略能提高IQA算法的有效性。4种客观评价指标Spearman等级相关系数(SROCC)、Kendall等级相关系数(KROCC)、Pearson线性相关系数(PLCC)和均方误差根(RMSE)表明所提算法性能优于已有的算法,与人的视觉系统具有一致性。In order to design a full-reference objective Image Quality Assessment(IQA)algorithm that consistent with subjective evaluation.Based on local feature extracted according to different algorithms and non-linear properties of generalized means strategy,two pooling strategies were proposed to promote the ability to evaluate Structural Similarity Image Measurement(SSIM),Gradient Structural Similarity Image Measurement(GSSIM)and Feature Similarity Index(FSIM).Numerical test was conducted in TID2008 and TID2013database,selections of various distortion nonlinear parameters as well as the changes of non-linear parameters among different distortion types were discussed.The results show that the application of general means strategies could promote the effectiveness of IQA algorithm.4kinds of objective evaluation indexes,which are Spearman's Rank-Order Correlation Coefficient(SROCC),Kendall's Rank-Order Correlation Coefficient(KROCC),Pearson's Linear Correlation Coefficient(PLCC)and the Root Mean Square Error(RMSE),indicate that the algorithm proposed herein is superior to the existing algorithm,proves the consistency with human visual system.
分 类 号:TP391[自动化与计算机技术—计算机应用技术] TP18[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49