检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国防信息学院信息化建设系,湖北武汉430010 [2]空军工程大学信息与导航学院,陕西西安710077
出 处:《装甲兵工程学院学报》2017年第1期84-89,共6页Journal of Academy of Armored Force Engineering
摘 要:军事命名实体(Military Named Entities,MNEs)内部嵌套关系复杂、语法区分不明显,从而影响实体识别效果,针对这一问题,提出了一种小粒度策略下基于条件随机场(Conditional Random Fields,CRFs)的MNEs识别方法。运用小粒度策略,结合手工构建的MNEs标注语料进行建模,采用CRFs模型识别出不可再分的小粒度MNEs,再通过对小粒度MNEs进行组合得到完整的MNEs。最后,通过实验对该方法进行了验证,结果表明:在作战文书语料的开放测试中,MNEs识别的召回率达到72%以上,准确率达到85%以上。The recognition of Military Named Entities( MNEs) is restrained by the complex nested relation of MNEs and obscure grammatical distinction. To resolve this problem,the authors put forward MNEs recognition method based on Conditional Random Fields( CRFs) model with small granularity strategy. The authors construct a marked corpus to train the model,and use the model to recognize small granularity MNEs which can't be divided,then get the complete MNEs by composing small granularity MNEs. Finally,the method is verified by the experiment,the results show that the recall rate and the precise rate of MNEs recognition is 72% and 85% respectively in the open test of operational document corpus.
关 键 词:条件随机场 军事命名实体 命名实体识别 小粒度策略
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.180