检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]四川大学数学学院,成都610064 [2]四川石油天然气建设工程有限责任公司,成都610200
出 处:《四川大学学报(自然科学版)》2017年第2期231-238,共8页Journal of Sichuan University(Natural Science Edition)
基 金:国家自然科学基金(11271273)
摘 要:针对定常的Navier-Stokes方程,本文给出并分析了基于速度场L^2投影的新型稳定化有限元方法.速度-压力逼近采用了P_1/P_1元.为了克服等阶元不满足inf-sup条件的问题,本文增加了压力投影稳定项.基于速度场L^2投影的稳定化方法,本文增强了L^2范数的稳定性.该稳定化格式的优点是所有的计算都在同一套网格上执行,不需要嵌套网格且只涉及速度场投影而不需要求解速度梯度投影.在连续的Navier-Stokes方程存在唯一一支非奇解的情况下,本文证明了该离散格式是稳定的.此外,本文还得出了离散解的误差估计.数值实验证实该方法是有效的.A new type of velocity L2 projection-based stabilized finite element method for steady Navier- Stokes equations is proposed and analyzed. Velocity and pressure are approximated equal order element P1/P1. To overcome the violation of discrete inf-sup condition when equal order elements are used, pressure projection stabilized term is added. Velocity projection-based stabilized method directly increases the L2 -stability instead of H1 -stability. The main advantage of the proposed methods lies in that, all the computations are performed at the same element level, without the need of nested meshes and the projection of the gradient of velocity. It is showed that this discrete model is stable, given the continuous Navier-Stokes equations has a unique branch of nonsingular solutions. Moreover, error estimates are derived. Numerical experiments show that the method is valid.
关 键 词:定常Navier—Stokes方程 速度L.投影稳定 对流占优 等阶元 压力投影稳定法
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.242.51