模型参数未知时的CPHD多目标跟踪方法  被引量:5

CPHD multi-target tracking algorithm with unknown model parameters

在线阅读下载全文

作  者:李翠芸[1] 王精毅 姬红兵[1] 王荣[3] LI Cuiyun WANG Jingyi JI Hongbing WANG Rong(School of Electronic Engineering, Xidian Univ., Xi'an 710071, China PLA, Unit 95980, Xiangyang 441000, China School of Electronic Information and Electronic Engineering, Shangluo Univ., Shangluo 726000, China)

机构地区:[1]西安电子科技大学电子工程学院 [2]中国人民解放军95980部队 [3]商洛学院电子信息与电气工程学院

出  处:《西安电子科技大学学报》2017年第2期37-41,184,共6页Journal of Xidian University

基  金:国家自然科学基金资助项目(61372003);国家自然科学基金青年基金资助项目(61301289)

摘  要:针对现有的多目标跟踪方法中,检测概率和量测噪声协方差等模型参数未知时目标跟踪性能下降的问题,提出了一种联合估计检测概率和量测噪声协方差的势概率假设密度目标跟踪方法.首先对多参数未知的多目标跟踪问题进行建模,将检测概率看作是某个分布中的变量,继而通过估计该分布的均值来作为检测概率,再利用变分贝叶斯方法对量测噪声协方差进行估计,最后给出了算法的高斯实现.仿真结果表明,所提算法在检测概率和量测噪声协方差联合未知环境下具有较好的目标跟踪性能.Since the multi-object tracking performance of the traditional method will decline with unknown model parameters, a CPHD target tracking algorithm is proposed to jointly estimate the detection probability and measurement noise covariance. Firstly, for model the unknown parameters of multiple targets tracking, the detection probability is considered as a variable in a distribution. The detection probability can be obtained by estimating the mean of the distribution. Then, the Variational Bayesian method is used to estimate the covariance of the measurement noise. Finally, the Gaussian implementation of this algorithm is presented. Simulation results show that the algorithm has good tracking performance under jointly unknown detection probability and the covariance of the measurement noise.

关 键 词:检测概率 量测噪声协方差 变分贝叶斯 多目标跟踪 

分 类 号:TN953[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象