基于PSO-WPESN的短期电力负荷预测方法  被引量:14

Short-term power load forecasting method based on PSO-WPESN

在线阅读下载全文

作  者:周红标[1] 王乐[1] 卜峰[1] 应根旺[1] 

机构地区:[1]淮阴工学院自动化学院,江苏淮安223003

出  处:《电测与仪表》2017年第6期113-119,共7页Electrical Measurement & Instrumentation

摘  要:精确的短期电力负荷预测是电力生产优化调度和安全稳定运行的重要保证,是智能电网建设的重要一环。为提高模型的预测精度,提出了一种基于粒子群优化小波包回声状态神经网络的短期电力负荷预测方法。首先利用多分辨率小波包分解方法对负荷数据进行分解和重构,建立小波包回声状态网预测模型;然后,利用粒子群算法对预测模型储备池中的参数进行优化。实验结果表明:针对短期电力负荷动态时间序列数据,与BP、Elman、传统ESN等网络相比,PSO-WPESN网络的预测精度、稳定性和泛化能力都得到明显增强,尤其是能在一定程度上缓解由于输出矩阵过大造成ESN存在病态解的弊端。Accurate short-term power load forecasting is an important guarantee for power production scheduling and safe and stable operation. It is also an important part in the construction of smart grid. In order to improve the prediction accuracy of the model,a new short-term power load forecasting method based on wavelet packet echo state network optimized by particle swarm optimization is proposed in this paper. Firstly,the load data is decomposed and reconstructed by wavelet packet method,and the prediction model of wavelet packet echo state network is established.Then,the prediction model parameters of dynamic neurons reservoir is optimized by particle swarm optimization algorithm. The experimental results show that the forecasting accuracy,stability and generalization ability of PSO-WPESN have been significantly enhanced,comparing with BP,Elman,traditional ESN,especially overcomes shortcomings caused by excessive output matrix.

关 键 词:粒子群 小波包分解 回声状态网 电力负荷 短期预测 

分 类 号:TM715[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象