检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈淼[1] 陈铃[1] 张建兴[1] 黄文苑[1] 赖允思
出 处:《实用医学杂志》2017年第5期797-800,共4页The Journal of Practical Medicine
基 金:广东省科技计划项目(编号:2012B061700096);广东省中医院拔尖人才专项(编号:2014KT1495)
摘 要:目的 :探讨自动乳腺全容积成像冠状面特征对改良BI-RADS分类的临床价值。方法:对201个BI-RADS分类为3~5类的乳腺肿块进行回顾性分析,所有的肿块术前均行常规彩超与自动乳腺全容积成像(ABVS)检查,用BI-RADS分类的标准化术语描述乳腺肿块的各种信息,并记录ABVS冠状面图像上肿块的完整界面回声、"汇聚征"、成角、毛刺,最后进行BI-RADS分类。结果:ABVS冠状面的汇聚征、完整界面回声、成角、毛刺在良恶性肿块鉴别上差异均有显著性(P<0.000 1)。ABVS的汇聚征诊断乳腺恶性肿块的敏感性为68.2%,特异性为93.4%,准确性为82.0%。常规超声联合ABVS冠状面特征改良BI-RADS分类后显示:3类的恶性率由8.5%降为3.2%,4a类的恶性率由25.2%降低为12.1%,5类的恶性率由94.2%升为98.0%。结论:ABVS的汇聚征可作为预测乳腺恶性肿块的有意义的独立指标;彩超联合ABVS有助于提高超声BI-RADS分类的准确性。Objective To investigate the clinical value of modified BI-RADS classification by using the coronal plane of automatic breast volume seaner. Methods The total of 201 BI-RADS 3 - 5 classification of breast masses were retrospectively analyzed. All masses underwent conventional ultrasound and ABVS examination. Using BI- RADS classification standard terms to describe various information of breast masses, and record the coronal image of the masses on the complete interface echo, convergence sign, angle, burr, which classified BI- RADS ultimately. Results The coronal plane of convergence sign, complete interface echo, angulation and burr were significantly different between benign and malignant tumors (P 〈 0.0001). The sensitivity of ABVS convergent sign in diagnosing breast malignant tumors was 68.2%, specificity was 93.4% and accuracy was 82%. The conventional ultrasound combined with the coronal feature of ABVS modified by BI-RADS classification showed that 3 kinds of malignant rate reduced from 8.5% to 3.2%. The rate of malignant 4a decreased from 25.2% to 12.1% and the rate of malignant 5 increased from 94.2% to 98%. Conclusion The convergence sign of ABVS can be used as a significant independent predictor of breast malignant tumors; ultrasound combined with ABVS is helpful to improve the accuracy of ultrasound BI-RADS classification.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.233