形式级数域上Engel级数展式中“数字”次数的增长速度  

The Growth Rate of the Degrees of the “digits” Occurring in Engel Series Expansions Over the Field of Formal Laurent Series

在线阅读下载全文

作  者:吕美英[1] 

机构地区:[1]重庆师范大学数学科学学院,重庆401331

出  处:《应用数学》2017年第2期419-423,共5页Mathematica Applicata

基  金:国家自然科学基金青年基金(11401066);重庆市教委科学技术研究项目(KJ1400535);重庆市科委前沿与应用基础研究计划一般项目(cstc2015jcyj A00026)

摘  要:WU在2003年研究了形式级数域上Engel级数展式中"数字"的次数以线性速度增长的例外集,并利用质量分布原理证明了该例外集具有满Hausdorff维数.本文我们主要研究形式级数域上Engel级数展式中"数字"的次数以多项式和指数速度增长的例外集,并给出他们的Hausdorff维数估计.WU in 2003 studied the exceptional sets of Engel series expansions in which the degrees of the digits grow with linear orders over the field of formal Laurent series, and proved the exceptional sets have full Hausdorff dimension by using the mass distribution principle. In this paper, we consider the exceptional sets of Engel series expansions in which the degrees of the digits grow with polynomial or exponential orders over the field of formal Laurent series, and we give the estimation of their Haudorff dimensions.

关 键 词:Engel级数展式 形式级数域 HAUSDORFF维数 

分 类 号:O156[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象