检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吕美英[1]
出 处:《应用数学》2017年第2期419-423,共5页Mathematica Applicata
基 金:国家自然科学基金青年基金(11401066);重庆市教委科学技术研究项目(KJ1400535);重庆市科委前沿与应用基础研究计划一般项目(cstc2015jcyj A00026)
摘 要:WU在2003年研究了形式级数域上Engel级数展式中"数字"的次数以线性速度增长的例外集,并利用质量分布原理证明了该例外集具有满Hausdorff维数.本文我们主要研究形式级数域上Engel级数展式中"数字"的次数以多项式和指数速度增长的例外集,并给出他们的Hausdorff维数估计.WU in 2003 studied the exceptional sets of Engel series expansions in which the degrees of the digits grow with linear orders over the field of formal Laurent series, and proved the exceptional sets have full Hausdorff dimension by using the mass distribution principle. In this paper, we consider the exceptional sets of Engel series expansions in which the degrees of the digits grow with polynomial or exponential orders over the field of formal Laurent series, and we give the estimation of their Haudorff dimensions.
关 键 词:Engel级数展式 形式级数域 HAUSDORFF维数
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15