检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《仪器仪表学报》2017年第3期593-601,共9页Chinese Journal of Scientific Instrument
基 金:国家自然科学基金(51575150)项目资助
摘 要:针对可重构索驱动机器人自身结构与环境障碍物间高碰撞风险问题,设计了一种基于临界支撑线及多指抓握的可重构柔索机器人协同避障方法。通过简化环境障碍物与机器人结构得到一类可重构柔索机器人在复杂环境下的一般模型,在此模型基础上利用其结构的拓扑约束及障碍物间的临界支撑线求取机器人的无碰撞运动区域;通过凸包算法及凸包映射算法求取不同构型及障碍物分布下可重构柔索并联机器人的力封闭工作空间,并分析不同构型及障碍物分布对机器人无碰撞力封闭工作空间的影响;随后,通过优化算法求取指定运动轨迹上最优索分布;最后在重构索驱动机器人实验平台对所得优化结果进行验证。实验结果显示,所设计的可重构柔索机器人协同避障方法能有效避免重构索驱动机器人运动过程中的碰撞。In order to deal with the collision between the components of the reconfigurable cable-driven parallel robot( RCDPR) and the obstacles in operating environment,a novel collaborative obstacle avoidance method is presented based on critical support lines and multi-finger grasp. Firstly,the general model of RCDPR in complex environment is derived by simplifying the robot structures and obstacles. Based on the model,the collision-free area of the RCDPR is estimated using the topological constraint of robot structure and the critical support lines between obstacles. The collision-free force closure workspace of different types of RCDPRs and obstacle distribution is obtained with convexhull method and convexhull mapping method,respectively. The impact of obstacle distribution and robotic type is analyzed. Then,in terms of a specific trajectory for the end-effector of the RCDPR,the optimal distribution of cables is derived with optimization algorithm. Finally,the verification is conduction the RCDPR prototype. The experimental results indicate that the presented method can effectively prevent the collision during the RCDPR movement.
关 键 词:可重构柔索并联机器人 协同避障 力封闭工作空间 多指抓握 最优索力分布
分 类 号:TH112[机械工程—机械设计及理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.177