检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安理工大学计算机科学与工程学院,陕西西安710048
出 处:《西安理工大学学报》2017年第1期18-23,共6页Journal of Xi'an University of Technology
基 金:国家自然科学基金资助项目(61401355;61502382);陕西省教育厅重点实验室资助项目(14JS072);西安市碑林区科技计划资助项目(GX1621)
摘 要:姿态变化和单视图是二维人脸识别研究的瓶颈问题。本文基于姿态矫正的思想,提出了一种基于单视图的多姿态人脸识别方法。首先,通过多视角主动表观模型进行人脸对齐和归一化;其次,基于线性回归算法寻求正、侧人脸之间的关系,并利用此关系进行姿态矫正得到正脸图像;最后,采用遗传算法筛选支持向量机的参数,并利用支持向量机对矫正后的人脸进行分类。在CASPEAL-R1人脸数据库上的实验结果表明,该方法在处理姿态变化的人脸识别问题时,对于姿态为15°、30°和45°的识别率分别达到了98%、84%和76%,识别性能高于其它方法。The pose variation and single view is a bottleneck problem for recognition of two-dimensional face.A novel method for recognition of pose-invariant face with single image based on the pose correction is proposed in this paper.Firstly,facial feature points are located based on the view-based AAM(Active Appearance Model)and face images are aligned and normalized.Secondly,mapping from the non-frontal image to the frontal image is constructed based on the algorithm for linear regression and frontal faces are obtained from non-frontal faces with different poses.Finally,the SVM(Support Vector Machine)is used to classify the facial features and the parameters of SVM is determined by the genetic algorithm.Experimental results based on the CAS-PEAL-R1 face database show that performance of the proposed approach is better than those by other approaches for pose-invariant face recognition.The recognition rates for face images with pose of 15°,30°and 45°can reach 98%,84% and 76% respectively.
关 键 词:多姿态人脸识别 线性回归 支持向量机 多视角主动表观模型
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145