检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]辽宁工业大学管理学院,辽宁锦州121001 [2]沈阳农业大学信电学院,辽宁沈阳110161 [3]国网辽宁省电力有限公司发策部,辽宁沈阳110004
出 处:《湘潭大学自然科学学报》2017年第1期109-113,共5页Natural Science Journal of Xiangtan University
基 金:辽宁省自然科学基金项目(201202191)
摘 要:为了解决传统神经网络的预测精度取决于输入变量和测试样本的缺陷,采用二阶Daubechies小波作为母小波,通过离散小波变换和逆变换的多分辨率把负荷序列分解为4个小波分量,不但把握了负荷序列的规律性,而且减轻了神经网络的学习压力.采用自适应遗传算法对模糊规则和权重进行修正,优化模糊神经网络,提出GNN-W-GAF模型.该模型既发挥了模糊算法的特点,又使得各种知识点在神经网络中相互融合,避免了初始值设定的随意性.仿真结果表明,该方法能显著提高预测精度和预测性能.To overcome the drawbacks of ANN which the prediction effect depends on the input variable and the test samples,the paper applied second-order Daubechies wavelets as mother wavelet and divided load sequence into four wavelet components by multi-resolution wavelet transform and its inverse transform.It not only grasped the importance of the regularity of the load sequence,but also reduced the neural network learning pressure.An adaptive genetic algorithm was used to amend fuzzy rules and network's weights,and optimize fuzzy neural network.GNN-W-GAF is proposed.Fuzzy neural network only played the characteristics of fuzzy algorithm but also mixed all kinds of knowledge together avoiding the arbitrariness of the initial value setting.The simulation results show that the proposed prediction method improves prediction accuracy and prediction performance significantly.
分 类 号:O224[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.149.249.113