检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]空军工程大学理学院,西安710051 [2]空军工程大学装备管理与安全工程学院,西安710051
出 处:《哈尔滨工业大学学报》2017年第4期108-115,共8页Journal of Harbin Institute of Technology
基 金:工业控制技术国家重点实验室资助(ICT1401);上海市重点学科建设资助(No.J50103)
摘 要:为解决执行器发生未知故障情况下不确定非线性系统的控制问题,采用一种自适应Backstepping变结构控制方法,建立了包括滞回非线性和失效、卡死等故障类型的非线性执行器模型.通过径向基函数(radial basis function,RBF)神经网络逼近系统中的未知非线性函数项,神经网络参数根据自适应律实时调整,保证了逼近效果.结合动态面控制,避免了Backstepping控制中的计算复杂性问题.引入的自适应补偿项消除了系统建模误差和不确定干扰的影响,理论分析证明了闭环系统半全局一致最终有界,仿真结果验证了该方法的有效性.An adaptive backstepping sliding mode control method is adopted to solve the control problem of uncertain nonlinear systems with unknown actuator failures. A model for the nonlinear actuator is developed which includes hysteresis nonlinearity, partial loss of effectiveness and total loss of effectiveness. Radial basis function neural network is employed to approximate the unknown nonlinear functions, and the parameters of neural network are tuned on-line by adaptation laws to improve the effect of approximation. The dynamic surface control is combined with backstepping control to avoid the explosion of complexity in the traditional backstepping design method. The influence of modeling error and uncertain disturbances is suppressed by introducing the adaptive compensation term. The closed loop system is proved to be semi-globally uniformly ultimately bounded by theoretical analysis. Simulation results are presented to demonstrate the effectiveness of this method.
关 键 词:滞回非线性 未知故障 不确定性 自适应Backstepping控制 RBF神经网络
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.19.32