检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北农林科技大学信息工程学院,陕西杨凌712100
出 处:《计算机工程与科学》2017年第4期748-755,共8页Computer Engineering & Science
基 金:国家863计划(2013AA10230402);国家自然科学基金(61303124)
摘 要:摄像机标定是三维重建时的必要步骤。传统的标定方法对设备要求高、操作繁琐,而自标定方法虽然简便,但精度不高,会严重影响三维重建的效果。因此,越来越需要一种操作简便并且精度高的自标定方法。采用SIFT特征点匹配算法,根据多视序列图像中对应点间的相互关系,利用光束法平差,提出了一种基于局部-全局混合优化的迭代优化方法。针对图像匹配量大的问题,提出了一种邻域内图像互匹配方法来降低时间代价。实验表明,本文提出的多摄像机自标定方法是一种有效的高精度方法,采用的邻域内图像互匹配技术能很好地降低图像匹配的时间消耗。根据多视图像的对应点间相互关系,充分利用局部-全局优化的思想,通过混合优化的方法得到相机参数,对比现有自标定算法,本文给出的方法有较高的精度和鲁棒性。Camera calibration is an essential step of 3D reconstruction. Conventional calibration methods require high precision equipment and sophisticated operations. Compared with them, camera self-calibration is simple but has low precision, which leads to significant performance degradation of 3D reconstruction. Therefore, there is a growing need for a simple and accurate high precision self-calibration method. By using the bundle adjustment algorithm and SIFT points matching relationship, we propose a local-global hybrid iterative optimization method. As for the large number of matching features, we propose a neighborhood image matching method, which can significantly reduce the matching time under the premise of maintaining accuracy. Experimental results show that the proposed method is effective and accurate, and it can reduce the time consumption of image matching. Based on the relationship between corresponding matching points in multi view images, our method makes full use of the local-global hybrid idea to compute the parameters of the camera. Compared with other existing methods, it is more robust with higher precision.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.143.110.248