检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]武汉理工大学航运学院,武汉430063 [2]武汉理工大学内河航运技术湖北省重点实验室,武汉430063
出 处:《交通信息与安全》2017年第2期23-29,共7页Journal of Transport Information and Safety
基 金:国家自然科学基金项目(51179147)资助
摘 要:目前的水上交通流评价方法在评价指标关系模糊、来源不清等情况下难以运用,且主观性较强,存在评价结果严重偏离实际的情况,忽视了客观性不足的问题。为降低专家主观性对水上交通流冲突严重度评价的影响,基于BP神经网络建立评价模型,并通过网络训练进行函数比较,确定最符合模型设定要求的Trainlm函数,以及精度与迭代次数。由于数据的差异性会对BP神经网络的训练效率和评价精度造成影响,基于聚类分析与BP神经网络建立新的评价模型,将训练数据按照欧几里得度量进行归类开展神经网络训练,分别对水上交通流冲突严重度进行评价。运用9个水道数据为例对模型进行验证,通过比较聚类分析数据与未处理的原始数据在BP神经网络中的评价结果,发现评价结果平均误差从42.05%降低到23.74%,进一步验证了BP神经网络在该领域的可行性。评价模型利用聚类分析与BP神经网络相结合的方法,不仅客观性较强,而且与单一使用BP神经网络的模型相比提升了评价精度。Existing approaches to evaluate ship traffic flow are difficult to use when the relationships among the in-dicators are not clear. These methods are subjective and the results are usually deviated from the real cases. In order to re-duce effects of experts" subjectivity when evaluating the severity of marine traffic flow conflicts, a model based on BP neural network is proposed in this paper, in which the precision of Trainlm function is calculated and the number of iterations is determined using network training. In order to avoid the influences of the data on training efficiency and accuracy of BP neural network, a new model based on clustering analysis and BP neural network is proposed. The training data is classi-fied according to Euclidean metric in order to carry out neural network training. This model is then used to evaluate the severity of the conflicts of water traffic flow. A case study of 9 channels is then performed to evaluate the proposed model. Comparing the processed data by clustering analysis with the original data,the evaluation error is reduced to 23.74% from 42.05%,which verifies tlie feasibility of BP neural network in this case. The modified model,which combining BP neural network with cluster analysis, has higher precision and more objectivity.
关 键 词:水路运输 交通流冲突 严重度评价 BP神经网络 聚类分析
分 类 号:U694[交通运输工程—港口、海岸及近海工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222