一种基于参数化重排名提高多样性的推荐方法  

A Method for Improving Recommendation Diversity Based on Parameterized Re-ranking

在线阅读下载全文

作  者:汪千松[1] 蒋胜[1] 王忠群[1] 

机构地区:[1]安徽工程大学计算机与信息学院,安徽芜湖241000

出  处:《安徽工程大学学报》2017年第1期72-76,共5页Journal of Anhui Polytechnic University

基  金:教育部人文社科规划基金资助项目(13YJA630098)

摘  要:针对传统个性化推荐算法追求提升推荐准确率而忽略总体多样性,从而导致用户满意度降低的问题,提出一种基于参数化重排名提高多样性的推荐方法.用户历史评分尺度决定了用户的偏好相关系数,该方法据此改进了传统重排名算法中偏好相关系数的计算方法.使用参数化的计算方法获得用户排名阈值,以实现推荐准确性与多样性的有效平衡,提高了推荐的质量需求.实验结果表明,该方法在推荐精确度都降低的情况下,较其他算法能够显著增加推荐的总体多样性,提高推荐质量.Aimimg at the problem of overemphasizing recommendation accuracy and ignoring the aggregate diversity in the traditional collaborative filtering recommendation algorithm,a method for improving recommendation diversity based on parameterized re-ranking is presented in this paper.User history ranking size decides users' preference coefficient.This paper improves the traditional re-ranking method to calculate the coefficient of users' preferences in the traditional re-ranking method by using the users' past preferences.The threshold of users' ranking is calculated by parameters,and the balance between recommendation accuracy and diversity is realized.Finally,experiment results demonstrate that the approach proposed in this paper can significantly enhance the aggregate recommendation diversity and promote the users' satisfaction compared with other similar recommendation algorithms,while reducing the recommendation accuracy.

关 键 词:推荐准确率 总体多样性 用户满意度 重排名方法 排名阈值 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象