小型风机叶片结构损伤识别实验模拟研究  被引量:3

Simulation Research for Damage Identification of Small-scale Wind Turbine Blade

在线阅读下载全文

作  者:张为 韩延琴 张鑫[2] 

机构地区:[1]甘肃东兴铝业有限公司陇西分公司,甘肃陇西748199 [2]兰州铁路局兰州电务段,兰州730000

出  处:《计算机测量与控制》2017年第4期240-243,共4页Computer Measurement &Control

摘  要:风机叶片由于受到复杂荷载和各种突然因素的作用而极易发生结构损伤;针对传统无损检测技术效率较低、需要先验知识、精度不高的缺点,文中采用基于振动特性的结构损伤识别方法辨识并比较研究叶片损伤前后结构参数的变化,同时对损伤进行定位;首先搭建小型风机叶片振动检测实验平台,采集叶片损伤前后的振动响应数据;其次利用自互功率谱法辨别叶片损伤前后的模态参数,通过实验数据对比其损伤前后固有频率的变化;最后利用轴向振型差法对叶片损伤进行定位;实验结果表明,在实验室条件下,基于振动的特性的结构损伤识别方法能准确辨别叶片损伤前后结构特性的变化,风机叶片各阶固有频率的下降能够作为判断其发生损伤的依据,轴向振型差法能准确实现损伤的定位。Wind turbine blade is prone to be damaged because of suffered alternating load and other kinds of factors. Aiming at the short comings of the traditional nondestructive identification technology, a damage identification method is used to identify structural parameters of blade and compare the change before and after damaged. The localization of the structural damage of wind turbine blade is realized at the same time. Firstly, the wind turbine blade vibration identification experimental platform set up, the blade vibration response data is collected. Then the self-cross spectrum density method is used to identify model parameters of wind turbine blade before and after damaged. The change of natural frequency of the blade before and after damaged is compared by the experimental data. Finally axial mode difference method is used to fix a position on the blade damage. Experimental results show that the damage identification method can accurately identify the structural characteristics of the leaves before and after damaged. The decrease of the natural frequency of the wind turbine blade can be used as a basis for judging the occurrence of the damage, and axial mode difference method can accurately realize the location of damage.

关 键 词:风机叶片 振动检测 自互功率谱法 损伤识别 

分 类 号:TK83[动力工程及工程热物理—流体机械及工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象