检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]安徽理工大学数学与大数据学院,安徽淮南232001
出 处:《安徽理工大学学报(自然科学版)》2017年第1期16-19,共4页Journal of Anhui University of Science and Technology:Natural Science
基 金:国家自然科学基金(No.61170172;61073102)
摘 要:针对目前我国城市中公共停车场的"停车难"、"停车乱"的问题,研究如何科学地规划建设城市公共停车场,从而为解决城市停车问题提供理论和实践依据。运用排队论和Poisson过程对公共停车场的停车情况进行分析,并建立具体的模型。通过对实例的计算验证了公共停车场的车辆到达的间隔时间服从Poisson分布,并通过解随机微分方程组求出了排队等待停车位的车辆数的数学期望和方差,以及服务时间的数学期望和方差,最后对所建模型进行了分析与总结,结果表明该模型是正确且有实用价值的。In this paper, the current problems of difficulty in parking and illegal parking at public car parks in Chinese cities as well as how to scientifically plan and build public car parks are studied, so as to provide the theory and practice basis for solving the problems of city parking. And the parking situation of public car parks by Poisson process and queuing theory is analyzed to build a specific model. The fact that the arrival time inter- vals of cars in public car parks obey Poisson distribution has been verified through the calculation of a living ex- ample. By solving the stochastic differential equations, the mathematical expectation and variance of the number of vehicles to wait for parking space are found out, and the mathematical expectation and variance of service time are also found out. Finally, the model is analyzed and summarized, and the results show that the model is right and valuable.
分 类 号:O226[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43