检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张莹丽[1] 许宝刚[1] ZHANG YingLi XU BaoGang
出 处:《中国科学:数学》2017年第5期667-672,共6页Scientia Sinica:Mathematica
基 金:国家自然科学基金(批准号:11331003和11571180)资助项目
摘 要:Gyrfs(1975)和Sumner(1981)分别独立地提出了以下猜想:对于任意的树T,存在一个函数f_T(x)使得每一个色数大于f_T(ω(G))的图均包含T作为诱导子图,其中ω(G)表示图G的团数.Gyrfs等(1980)证明了,若一个图G不含三角形和长为4的圈,则G含有任一个χ(G)个顶点的树作为诱导子图.另外,他们还证明了,若G不含三角形,且χ(G)≥m+n,则G一定包含一个特殊的树(m,n)-mop作为诱导子图.本文推广了Gyrfs等(1980)的这两个结果,证明了(1)若图G的任一个顶点至多含在k个三角形和l个长为4的圈中,且χ(G)≥t+2k+2k,则G包含任一个t个点的树作为诱导子图;(2)若图G中的每一个顶点至多包含在k个三角形中,且不能够诱导出T,则χ(G)<m(k+1)+n,其中T为(m,n)-mop.Gyarfas(1975) and Sumner(1981) independently,conjectured that for every tree T,there exists an integer-valued function f_T(x) such that every graph G of chromatic number larger than fT(ω(G)) contains T as an induced subgraph,where ω(G) is the clique number of G.Gyarfas et al.proved that if G contains no triangles and cycles of length 4,then G contains every tree on x(G) vertices as an induced subgraph.Besides this,they also confirmed that if G contains no triangles and x(G) ≥ m + n,then G can induce an(m,n)-mop which is a special tree.In this note,we generalize these two results of Gyrfs et al.and prove that(1) if every vertex of G is contained in at most k triangles and l cycles of length 4,and x(G) ≥ t + 2k + 2l,then G contains every tree on t vertices as an induced subgraph;(2) if every vertex of G is contained in at most k triangles,and x(G) ≥ m(k + 1) + n,then G contains an(m,n)-mop as an induced subgraph.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117