检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨陈东[1] 常安定[2] 李文胜[1] 张明[1]
机构地区:[1]西安航空学院理学院,陕西西安710077 [2]长安大学理学院,陕西西安710061
出 处:《水资源与水工程学报》2017年第1期100-103,共4页Journal of Water Resources and Water Engineering
基 金:陕西省教育厅科研计划项目(16JK1394)
摘 要:通过分析抽水试验数据,为估计含水层参数提供新的方法。在粒子多样性方面对粒子群算法进行改进,提高了算法的收敛速度和精度。将改进的粒子群优化算法应用到含水层参数估计中,计算结果与其他方法进行对比,并对不同初始值范围下参数估计值进行分析探讨。结果表明:改进粒子群算法估计结果相对误差(7.3%和4.5%)小于其他方法,且目标函数值相对更小,达到0.335×10^(-5);对于不同初始参数范围,利用此算法均能达到满意结果且寻优率高。基于抽水试验数据估计含水层参数的改进粒子群优化算法计算结果有效且可靠,算法收敛速度快,寻优能力强,稳定性好。To analyze pumping test data can supply a new method for estimating aquifer parameters. The particle swarm algorithm improved in terms of particle diversity increased convergence speed and accuracy of the algorithm. The improved particle swarm optimization algorithm was applied to estimate the aquifer pa- rameters. The calculated results were compared with the other methods , and the estimated values of param- eters under different initial scopes were analyzed and discussed. The resuhs showed that, the relative errors of improved particle swarm algorithm ( which were 7.3 % and 4.5 %, respectively) were smaller than the relative errors of the other methods, and the objective function value was also relatively smaller, reaching 0. 335 x 10-5 ; For different initial parameter ranges, the improved algorithm obatined a satisfactory parameter estimation result and maintained a high rate of optimization search. Based on pumping test data, the results of improved particle swarm optimization algorithm for estimating aquifer parameters were more effective and reliable with fast convergence speed, strong optimization ability and good stability.
分 类 号:TV138[水利工程—水力学及河流动力学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117