基于神经网络的文本表示模型新方法  被引量:18

New method of text representation model based on neural network

在线阅读下载全文

作  者:曾谁飞[1] 张笑燕[1] 杜晓峰[2] 陆天波[1] ZENG Shui-fei ZHANG Xiao-yan DU Xiao-feng LU Tian-bo(School of Software Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China School of Computer, Beijing University of Posts and Telecommunications, Beijing 100876, China)

机构地区:[1]北京邮电大学软件学院,北京100876 [2]北京邮电大学计算机学院,北京100876

出  处:《通信学报》2017年第4期86-98,共13页Journal on Communications

摘  要:提出了一种改进的文本表示模型提取文本特征词向量方法。首先构建基于词典索引和所对应的词性索引的double word-embedding列表的word-embedding词向量,其次,利用在此基础上Bi-LSTM循环神经网络对生成后的词向量进一步进行特征提取,最后,通过mean-pooling层处理句子向量后且使用了softmax层进行文本分类。实验验证了Bi-LSTM和double word-embedding神经网络相结合的模型训练效果与提取情况。实验结果表明,该模型不但能较好地处理高质量的文本特征向量提取和表达序列,而且比LSTM、LSTM+context window和Bi-LSTM这3种神经网络有较明显的表达效果。Method of text representation model was proposed to extract word-embedding from text feature. Firstly, the word-embedding of the dual word-embedding list based on dictionary index and the corresponding part of speech index was created. Then, feature vectors was obtained further from these extracted word-embeddings by using Bi-LSTM recurrent neural network. Finally, the sentence vectors were processed by mean-pooling layer and text categorization was classified by softmax layer. The training effects and extraction performance of the combination model of Bi-LSTM and double word-embedding neural network were verified. The experimental results show that this model not only performs well in dealing with the high-quality text feature vector and the expression sequence, but also significantly outperforms other three kinds of neural networks, which includes LSTM, LSTM+context window andBi-LSTM.

关 键 词:神经网络 词向量 Bi-LSTM 文本表示 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象