检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曾谁飞[1] 张笑燕[1] 杜晓峰[2] 陆天波[1] ZENG Shui-fei ZHANG Xiao-yan DU Xiao-feng LU Tian-bo(School of Software Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China School of Computer, Beijing University of Posts and Telecommunications, Beijing 100876, China)
机构地区:[1]北京邮电大学软件学院,北京100876 [2]北京邮电大学计算机学院,北京100876
出 处:《通信学报》2017年第4期86-98,共13页Journal on Communications
摘 要:提出了一种改进的文本表示模型提取文本特征词向量方法。首先构建基于词典索引和所对应的词性索引的double word-embedding列表的word-embedding词向量,其次,利用在此基础上Bi-LSTM循环神经网络对生成后的词向量进一步进行特征提取,最后,通过mean-pooling层处理句子向量后且使用了softmax层进行文本分类。实验验证了Bi-LSTM和double word-embedding神经网络相结合的模型训练效果与提取情况。实验结果表明,该模型不但能较好地处理高质量的文本特征向量提取和表达序列,而且比LSTM、LSTM+context window和Bi-LSTM这3种神经网络有较明显的表达效果。Method of text representation model was proposed to extract word-embedding from text feature. Firstly, the word-embedding of the dual word-embedding list based on dictionary index and the corresponding part of speech index was created. Then, feature vectors was obtained further from these extracted word-embeddings by using Bi-LSTM recurrent neural network. Finally, the sentence vectors were processed by mean-pooling layer and text categorization was classified by softmax layer. The training effects and extraction performance of the combination model of Bi-LSTM and double word-embedding neural network were verified. The experimental results show that this model not only performs well in dealing with the high-quality text feature vector and the expression sequence, but also significantly outperforms other three kinds of neural networks, which includes LSTM, LSTM+context window andBi-LSTM.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28