两次引导滤波的显微视觉散焦图像快速盲复原  被引量:5

Fast Blind Restoration for Microscopic Visual Defocused Images Based on Two Guided Filterings

在线阅读下载全文

作  者:尹诗白[1] 王一斌[2] 李大鹏[1] 邓箴[3] 

机构地区:[1]西南财经大学经济信息工程学院,四川成都610074 [2]四川师范大学工学院,四川成都610101 [3]宁夏大学信息工程学院,宁夏银川750021

出  处:《光学学报》2017年第4期110-117,共8页Acta Optica Sinica

基  金:国家自然科学基金重大项目(91218301);国家自然科学基金青年基金(61502396);宁夏自然科学基金(NZ15054);西南财经大学中央高校基本科研业务费专项资金(JBK150503);西南财经大学中央高校基本科研业务费青年教师成长项目(JBK170136);互联网金融创新及监管四川省协同创新中心资助项目

摘  要:针对显微图像盲复原算法存在的计算量大、振铃效应以及噪声敏感的问题,提出贝叶斯框架下两次引导滤波的快速盲复原算法。利用显微图像成像原理中基于深度信息估计点扩展函数的概率模型,构建了贝叶斯框架下盲复原的最小优化问题;通过分析最大后验概率的最小优化问题求解过程,推出了实施引导滤波器可快速求解优化问题的结论;为有效去除振铃和噪声,设计了两次引导滤波的求解方案,其将第一次引导滤波求解的结果作为优化问题的二次输入。实验结果表明,复原结果的像素误差率约为0.04,较常用盲复原算法的复原准确度提高了约20%,运行时间也大幅缩短,该方法能有效应用于显微视觉下微装配散焦图像盲复原的工程实践中。To solve the problems of large computation cost, ringing and noise sensitivity in blind restoration algorithms for microscopic images, the blind restoration algorithm under Bayesian framework based on two guided filterings is proposed. The depth information of microscopic image is used to estimate the probabilistic model of point spread function, and a minimum optimization problem under the Bayesian framework is built. The guided filtering is applied to searching the optimal solution through analyzing the solving scheme of the minimum optimization problem of the maximum posterior probability. The solution scheme of the two guided filtering algorithms is designed for removing ringing and noise, which means the restoration result of the first guided filtering will serve as input of the optimization problem again. Experimental results show that the pixel error rate of recovery result is around 0.04, which increases by 20 % compared to those of other commonly used algorithms, and the running time is significantly shortened. The proposed algorithm can be used in assembly of the micro-structures for defocused image blind restoration.

关 键 词:图像处理 图像复原 贝叶斯框架 微装配 引导滤波 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象