检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邓磊[1,2] 陈宝华[1,2] 赖伟良 陈志祥[1,2] 周杰[1,2,3]
机构地区:[1]清华大学自动化系,北京100084 [2]清华信息科学与技术国家实验室,北京100084 [3]智能技术与系统国家重点实验室,北京100084
出 处:《电子学报》2017年第3期527-533,共7页Acta Electronica Sinica
基 金:国家自然科学基金(No.61225008;No.61373074;No.61373090);国家重点基础研究发展计划(973)(No.2014CB349304);教育部基金(No.20120002110033)
摘 要:标定多个监控摄像机的位姿是智能监控系统的基础.传统的标定方法需人工逐一标定每个目标摄像机,且难以处理非重叠监控视场以及摄像机运动和扰动的情况.对此本文提出一种基于三维重构的交互式标定框架,通过引入场景三维特征点云作为中间层,仅需一次性建立其与参考背景模型间的几何变换关系,即可通过目标摄像机图像与三维点云的匹配实现自适应标定,可显著降低工作量.由于匹配是建立在监控图像与三维点云之间而非监控图像之间,因此可以处理监控视场非重叠的情况.对于摄像机运动和扰动,提出了一种在线相对姿态传递方法,能够克服摄像机扰动和运动带来的姿态变化问题.实验证明了本文方法的有效性.Calibrating camera is essential for intelligent surveillance systems. Conventional calibrating methods usually cal- ibrate the target cameras one by one and can not handle non-overlapping cases or camera motion/disturbance. In this work, we present an interactive calibration framework based on 3D reconstruction. The reconstructed 3D feature point cloud is treated as the interface between the 3D background model and the target camera. Through 2D-3D matching,a target camera could be automati- cally calibrated against the 3D feature point cloud. Due to the matching is performed between the target image and the point cloud, non-overlapping cases can be well handled. Also ,an online relative pose transfer scheme is proposed to deal with the problem of camera disturbance or motion efficiently. Experiments demonstrate the effectiveness of the proposed framework.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222