检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王栋[1] 蒋亮[1] 江陈桢[1] 李珺涵 胡斌 朱力鹏 邓松[3]
机构地区:[1]国网南通供电公司,江苏南通226001 [2]全球能源互联网研究院,北京102209 [3]南京邮电大学,南京210023
出 处:《电测与仪表》2017年第9期18-23,共6页Electrical Measurement & Instrumentation
基 金:国家自然科学基金资助项目(51507084);中国博士后基金资助项目(2016M591890)
摘 要:配电低压台区的综合评价对于智能配电网的运行监控至关重要。针对现有的这些配电网综合评估方法存在主观性强、评价指标体系复杂多样等问题,提出了基于混合基因表达式编程的配电低压台区综合评价算法。首先利用粗糙集的思想,通过对综合评价决策表依赖度的计算快速求解最优约简。在此基础上,利用基因表达式编程挖掘配电低压台区综合评价函数,最后基于该函数模型达到评价和预测配电低压台区运行状态的目的。仿真实验表明,对于复杂高维的配电低压台区综合评价决策信息,所提出的算法具有较高的挖掘效率和预测准确率,同时具有较强的实用性。Comprehensive evaluation of distribution low voltage station area is essential for the operation and monito- ring of smart distribution network. The existing comprehensive evaluation methods of the low voltage station area is very subjective, and the factors affecting the comprehensive evaluation are too many to lead to the low accuracy of the evaluation model. In order to solve this problem, comprehensive evaluation algorithm of low voltage station area in smart distribution network based on hybrid gene expression programming is proposed which combines with rough set theory. Firstly, based on the idea of rough set, the optimal reduction is solved by the calculation of the dependence degree of the comprehensive evaluation decision table. Secondly, comprehensive evaluation function of low voltage sta- tion area in distribution network is mined by gene expression programming. Finally, the purpose of the evaluation and prediction of the low voltage station area operation state is evaluated based on the function model. Experimental results show that comprehensive evaluation function model on distribution low voltage station area based on the proposed algo- rithm has high efficiency of function mining, accuracy of prediction and strong practicality.
分 类 号:TM933[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28